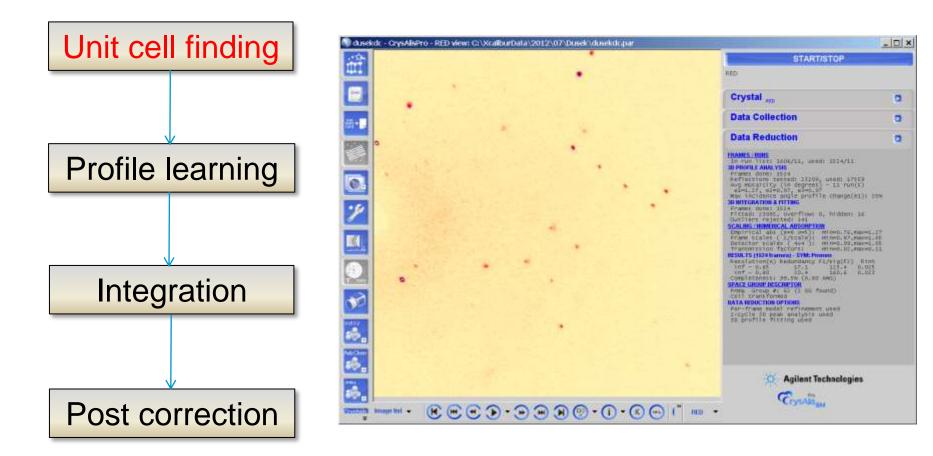
Méthodes de intégration: CrysAlis^{Pro}

Reciproque workshop -Ambleteuse

Mathias Meyer X-ray Group Software Manager

9th September 2014


Condi

Overview

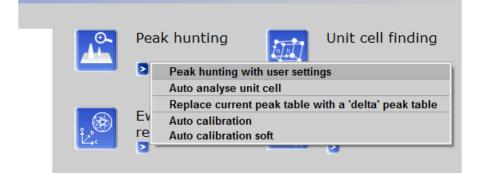
- Unit cell finding
- Data reduction (Profile learning and integration)
- Post corrections
- Experimental workflow and strategy
- Twins
- Foreign formats
- Incommensurates
- Powders

Typical data reduction sequence

Unit cell finding

- Peak hunting
- Unit cell finding
- Automatic
- Manual
- Ewald^{Pro}
- Intelligent filtering
- Instrument model

Unit cell finding


Lattice wizard power tool

Lattice wizard	(1.0.32)
Lattice wizard	CrysA
LATICE Current cell (CSD: 14. +57L) 5.9641(13) 9.051(2) 18.380(3) 90.019(15) 90.008(15) 90.005(18) 992.1(3) Constrained current cell 5.9660(9) 9.0487(12) 18.376(3) 90.0 90.0 90.0 992.1(2) Lattice reduction	Peak hunting Unit cell finding
selected cell 5.9640 9.0510 18.3790 90.0165 90.0103 90.0034 oP 32 reduced cell 5.9640 9.0510 18.3790 90.0165 90.0103 90.0034 992.1	Ewald explorer - Reindexation with current cell
PEAK TABLE Peak hunting table UB fit with 621 obs out of 867 (total:868,skipped:1) (94.69%) NSTRUMENT MODEL Goniometer beam: 0.04468 alpha: 50.00000 beta: 0.00000	Refine Instrument I Lattice model
om zero: 0.00196 th zero: 0.01343 ka zero: 0.00000 Detector ×rot: -0.00534 y-rot: 0.02292 ×-cen: 1024.74953 y-cen: 1024.22259 distance: 61.99976 Wavelength Cu (Amg): A1 1.54056 A2 1.54436 B1 1.39222 Refinement res: 0.012103, da=0.003376, sx=0.005684, sy=0.003944	Twinning - multi-crystals
h=0.005681, k=0.005833, i=0.004575 ≇ref: 820 (skipped: 0)	Load Information Save
	Unwarping - Precession Images
	Log window

Unit cell finding – Peak hunting

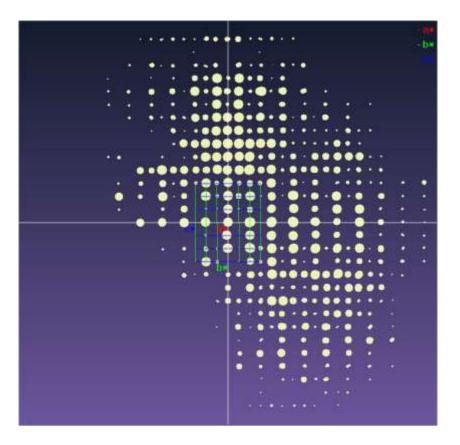
- Defaults work well for 'normal' crystals and twins
- Super-structures may require tweak

		eak	hunti	ing							CrysA
	0.000	0.000	Second Second		0.0000	ectory 91c\A		2			
						-191c					time 💌
194	enart	444	100	INFORMER		deres i fage	Lappa	\$94.	11411	444	
*	4.00	16.00	1.00	8.00	1.0	-0.18	48.00	-10.00	h	*	
2	-14.00	-18.01	1.10	30.00	1	-41.55	38.10	-186.日	1	14	
	\$7.00	88.00	5.00	20.85	1	111.00			1	10	
٠	118.00	347.00	3.00		1	123.00	88.00	-10.00	- E-	11	
2	-124.00	-10.00	5.00	25.55	12	-44,40	104.00	10,00	1	-	
ς.	-122.00	-47.48	1.10		- 2	-42.50	-94.00	10.00	12	18	
	-181.00	-81.10	1.00	20.00	14	-46.10	-94.02	-40.20	121	40	
									-15		
0 1	nodify	this I	behavi	our ed	t the	will eva run itst ground	>			1220	Traditional peak hunting Smart peak huntin Overwrite existing peak hunting table
		N. E	1008					20	_		• Yes 🗇 No
		161 E						100			
											The second se
r											aller balle
r											
ŗ											C . C
1											· · ·
The second second											F . F

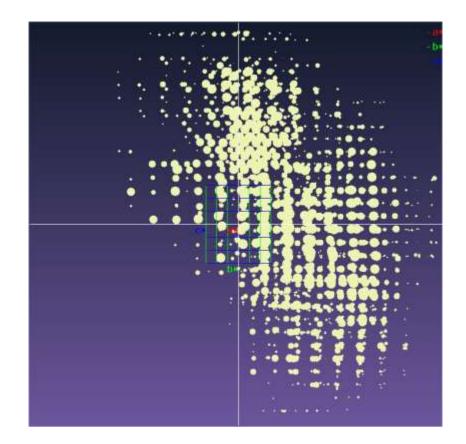
Unit cell finding – Peak hunting

Data filtering via peak table

Ľ	Peak	table	editir	ng							reciprocal space
alas.			1.3		7			interaity	flag	post yes	Peak table flags
1	1	-4	-4	-0.14119	+0.15875	0.111106	6.12094	404	i gt	1	
2	3	-1	-+	-0.12881	-0.10154	0.13485	6.79425	4098	i gt	1	Produce axial photo
	4	2	-4	-0.07998	0.07068	0.22739	6.13248	2254	i gt	1	
*	8		-31	-0.06094	0.16215	0.48234	2.18766	.\$10	s gt		R€ Old ewald explorer
			~3	0.05813	0.22795	0.14548	8.85836	1241	s gt	1	[R∈ Old ewald explorer
		-9	-12	-0.24289	-0.48558	8. 17259	2.14633	457	A gt		
2		-	-4	-0.18796	-0.81212	0.10914	8.74905	12.0	a gt		model
		1	-1	-0,09788	0.01389	0.20285 0.77585	#.41302 1.78172	3731. 379	a gt		model
10	÷	-1	-16	-0,19669 -0,16609	-0,89729 -0,22118	0.01074	1.78268	435	1 91	÷	
10	÷.	2	-10	-0.05996	0.14993	0.01074	3.76869	490	a gr	÷	
12	÷.	2	-12	-0.05060	0.08875	0.70713	2.14811	800	a gi	÷.	
18	-1	- 8	-13	-0.13147	-0.80939	0.47468	1.60190	471	a gi	1	
10			-31	-0.18081	-0. e1888	0.39792	2.05965	1482	a gi	1	
18	1	-2	-0	-0.15490	-0.19833	0.23813	1.41600	1414	i at	1	
18	+1		-17	0.18235	0.22600	0.90268	1.60377	808	i gi	1	
17	-1	-8	-31	-0.12071	-0.76521	0.37828	1.78900	454	1 gl	1	
3.0		-7	-5	-0.10928	-0.87653	0.29640	2.25940	442	i gl	1	
19	0	-7	-30	-0.17171	-0.50f26	0.04687	2.18794	555	i gl	1	
20	0	-é	-4	-0.12108	-0.82171	0.06355	1.47518	500	i gl	1	
21	0	-2	-3.0	-0.14529	-0.00274	0.74255	1.70533	621	1 g1	1	
22	1	-1	-8	-0.13975	-0.10007	0.25945	8.72207	1597	i gl	1	
22	1	2	-6	-0.09992	84150.0	0.32907	4.45546	2049	1 g1	1	
24		7	-12	0.04515	0.16444	0.77700	1.99660	360	1 g1	1	
25	0	7	-11	0.05055	0.15241	0.72791	2.04583	12.65	1 yl	1	
24		-2	-10	-0.15045	-0.27557	0.44207	2.79541	2520	1 41	1	
\$7	÷	~2	-0	-0.17078	-0.22594	0.02195	2.45296	2488	2 41	-	
25 29	÷.	1	-6	-0.10922	-0.02572	0.00635	4.72228	1965	2 41		
29			-36	-0.04045	-0.14381	0.00001	1.71001	155	ı yî	-	·
2 T								111			

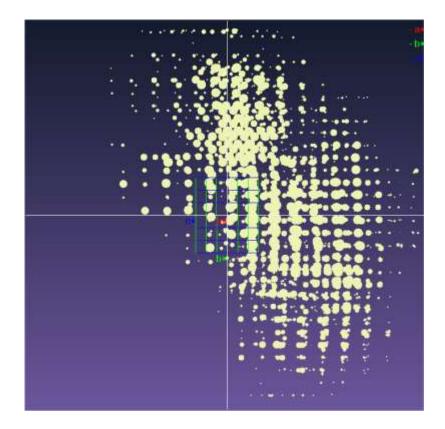

Unit cell finding – Automatic unit cell finding

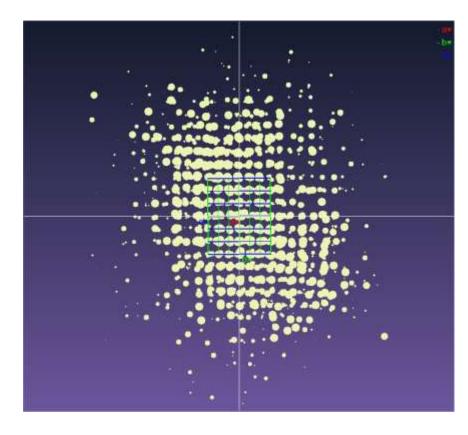
	I	Unit	cell finding	<pre>1 (CSD: 0 +0L) 3) 24.132(2) 28.945(3) 104.730(10) 89.910(8) (2) 1 cell 3) 24.1483(17) 28.903(2) 3 cell 4) 24.1483(17) 28.903(2) 3 cell 5) 24.1483(17) 28.903(2) 5 cell 5 cel</pre>
			Unit cell finding wi	th options
			Select unit cell from	m list of found cells
			Brute force indexa	tion of known cell
r -		R€	Indexation from the	ree known reflections
ce		CU	Set orientation ma	trix by hand
			Unit cell finding in	direct space (Clegg)
			Search for smaller	unit cell volume
+			Search for better x	y detector center
ient		La-	Remove lambda-ha	alf reflections from peak table
	101	tra	Crystal shape	
			Find reflection tails	s and mark skip
			Delete reflection ta	ils
	-	Tm	Check for the same	ole jumping
	dia ka	In-	Unit cell gaps	+
	G	QLa	or orystais	


ind cell	
Peak table	Algorithm
(• Normal peak table	T-vector Dirax
🔿 Delta (differential) peak table	Stereographic
Find center 🔲 Use search box Edit	() Stereographie
Sample type	
Single crystal	
Unit cell min	тах
● SM ● PX ● User 2.0	120.0 Calc
Twin / multicrystal	max
# of components 2 2.0	120.0 Calc
Lock present components (see 'Twin information' section Twin 1 of the Lattice Wizard):	🗖 Twin 2 📘 Twin 3
HINT: To lock current UB for twin 1, first go to UI 'Current UB to twin'. Then return here and select	
Consider Bravais lattice type	
Force identical lattice for all components (und	theck for multi-crystal)
Known cell	
Search known cell 16.22 24.13 28.95 90.10 10	4.73 89.91
	OK Cancel

Unit cell finding – Influence of bad instrument model

Good instrument model

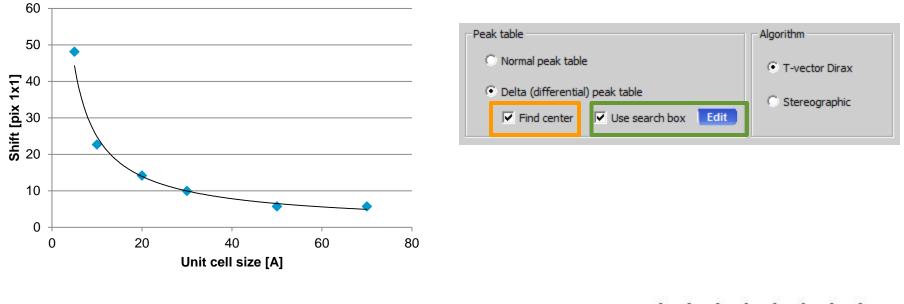


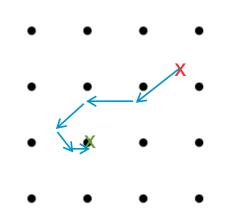

Bad instrument model:

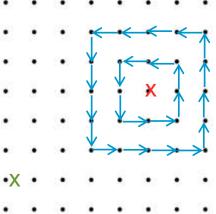
Beam center deviation 40 pix

Unit cell finding – Automatic unit cell finding

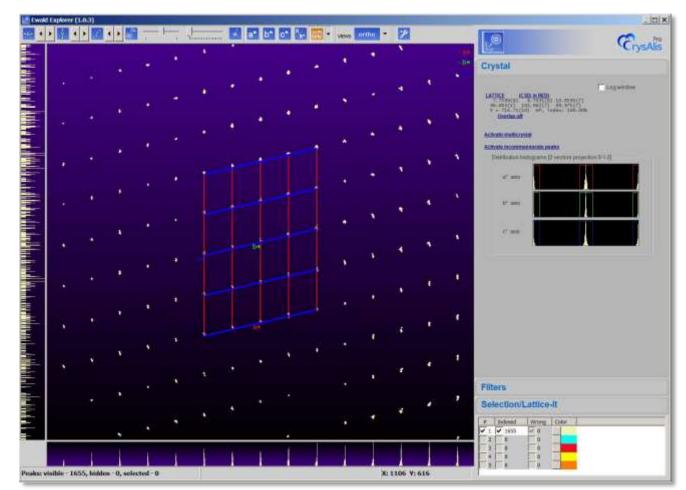
Bad instrument model:

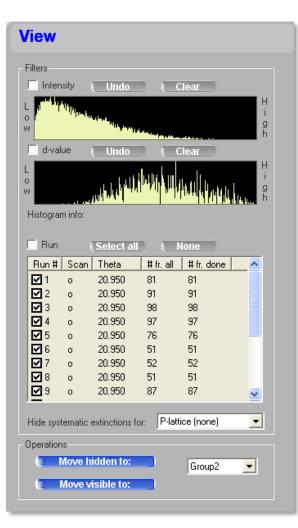

Beam center deviation 40 pix

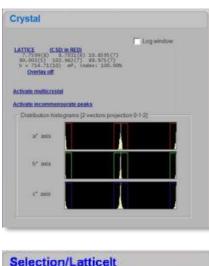

Bad instrument model:

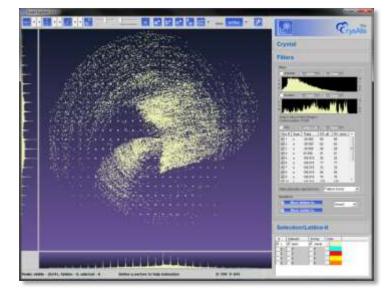

Delta-peak table

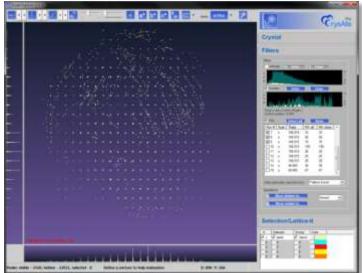
Unit cell finding – Automatic unit cell finding

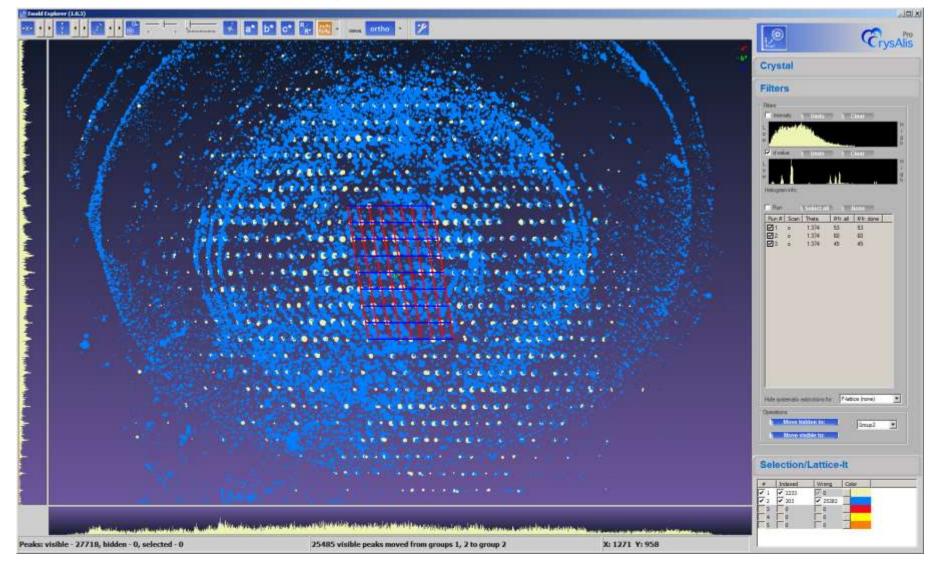



Power Tools Ewald^{Pro}

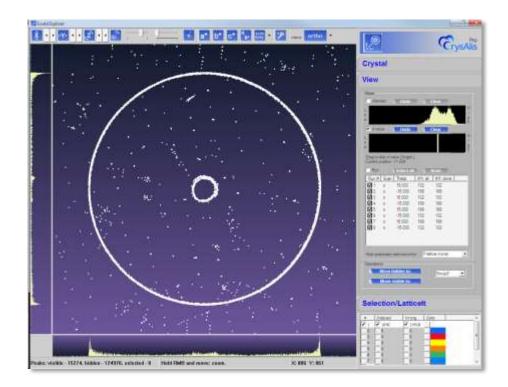

- User-friendly, powerful reciprocal lattice viewer
- Twin/Multi-lattice visualisation
- Drag filter tools simple & intuitive
- Lattice^{IT} tool for defining periodicity
- Reflection grouping
- Incommensurate overlay tools

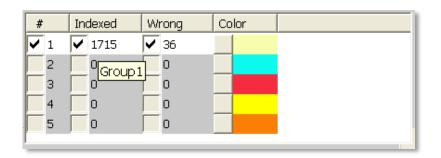


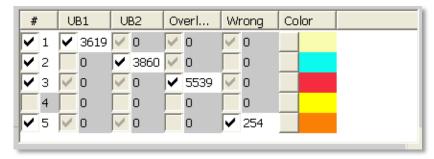

Ewald^{Pro} – **Functional Tabs**



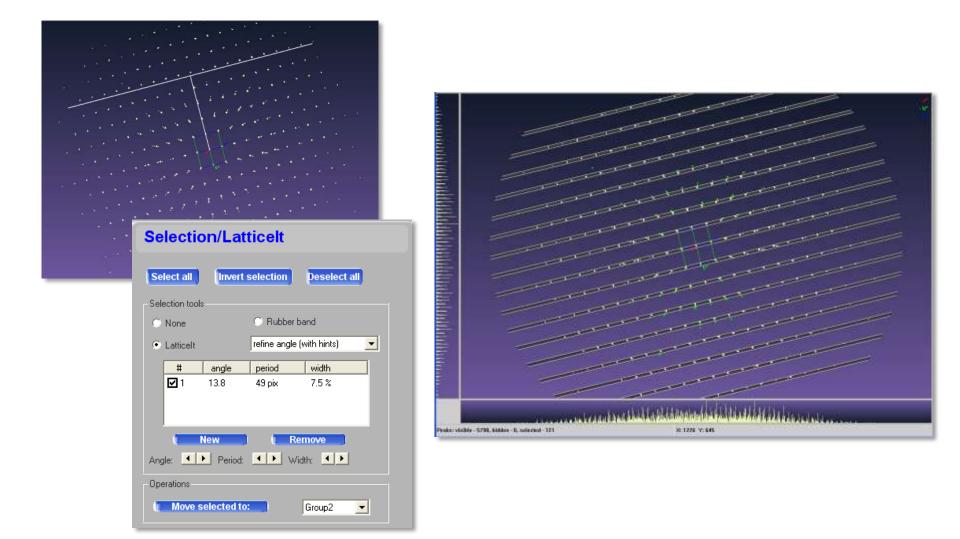
Ewald^{Pro} – Ice Ring Example

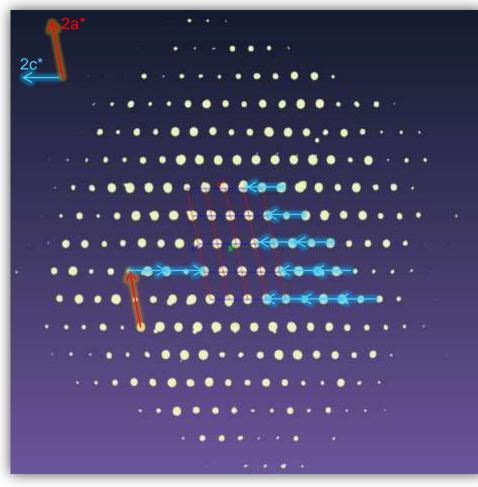



Ewald^{Pro} – Groups


Groups:

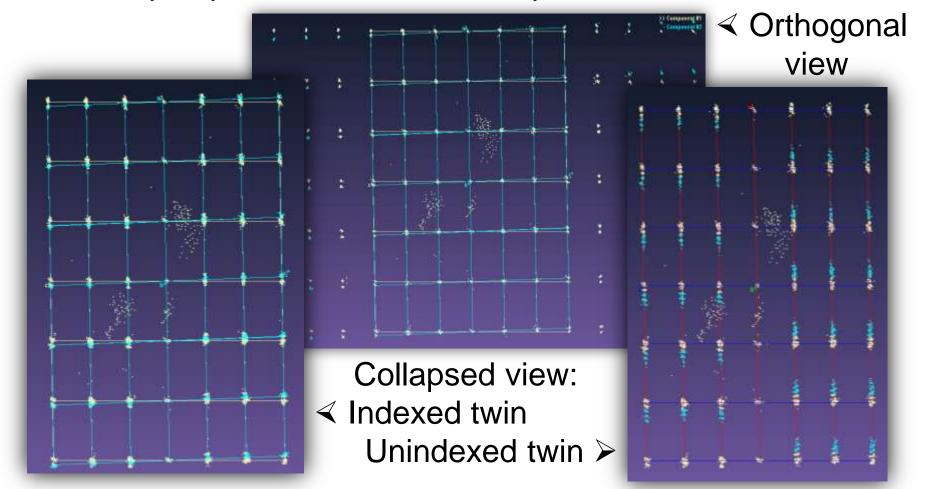
- Indexation quality
- Twin components
- Resolution range
- Incommensurates


Specific features (weak/strong peaks, powder rings, etc.)


Ewald^{Pro} – Lattice^{It}

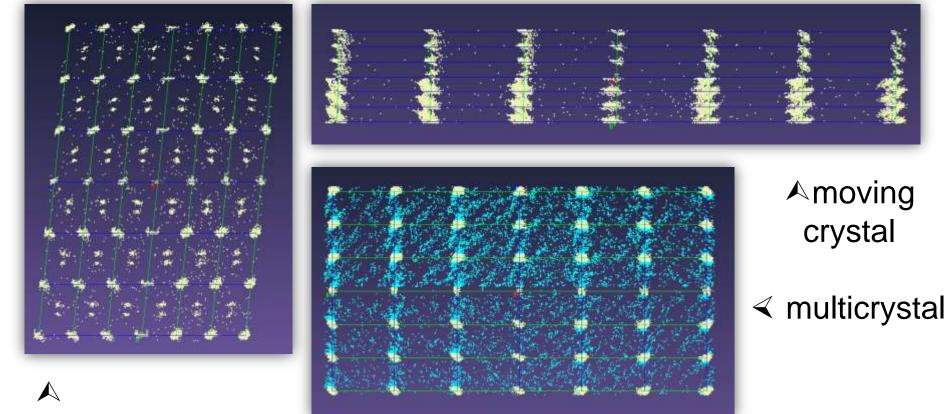
EwaldPro – new view mode: collapse peaks

Collapse peak view – construction

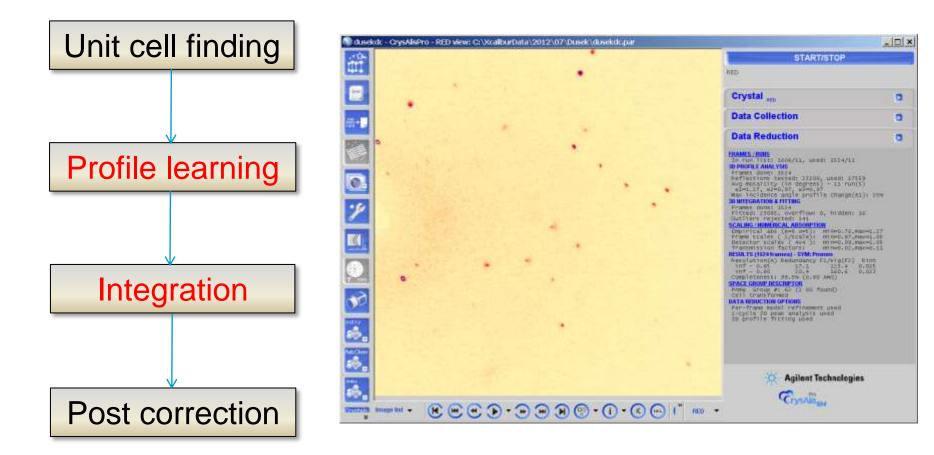


- Lattice vectors are multiplied by lattice overlay size
- Subtract lattice vectors until given peak hits range

EwaldPro – new view mode: collapse peaks


Collapse peak view – twin example

EwaldPro – new view mode: collapse peaks

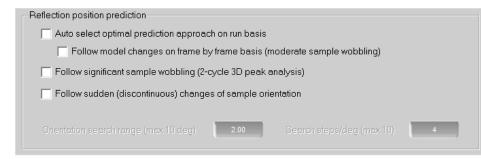

Collapse peak view – other examples

incommensurate

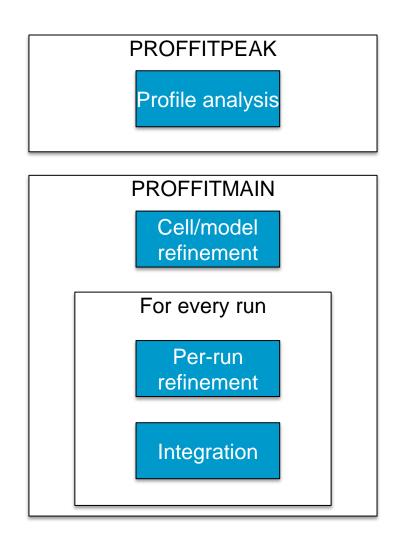
Typical data reduction sequence

Data reduction wizard

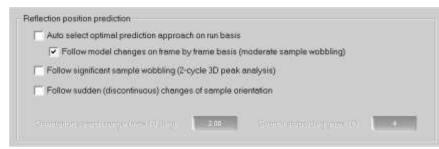
- Collecting information
- Approaches of reflection finding/profile learning/integration
- Approaches to background

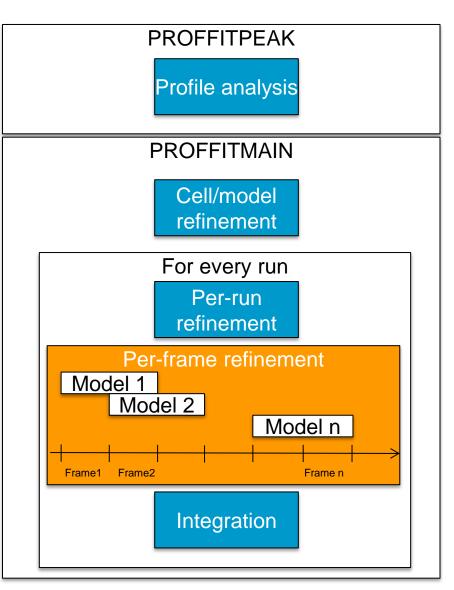


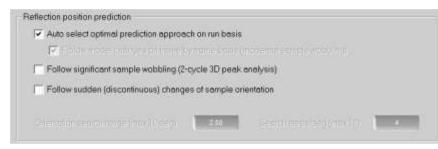
Data reduction wizard – options

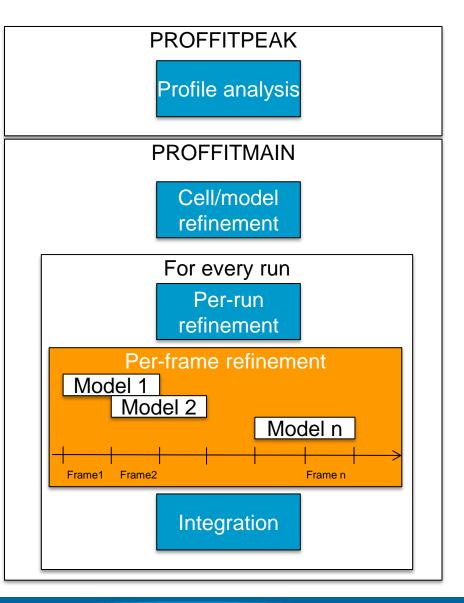

- Model refinement options for optimal prediction accuracy
- Special data reduction parameters

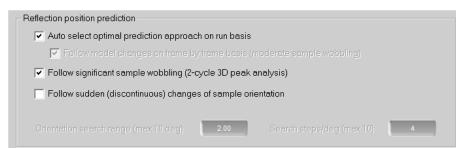
Profile fitting data reduction	CrysAlis
	CrysAlis
p 3. Basic algorithm parameters	
effection position prediction	
Auto select optimal prediction approach on run basis	
Follow model changes on trame by frame basis (moderate sample wobbl	ing)
Follow significant sample wobbling (2-cycle 3D peak analysis)	
Follow sudden (discontinuous) changes of sample orientation	
<pre>summaries implicing (1) grad [2.6] Similary [2]</pre>	men [4
Edit special pars	
previous run of dc profilit has left 3d profile information and/or integration results on t	he disk
Citer data from previous ran	

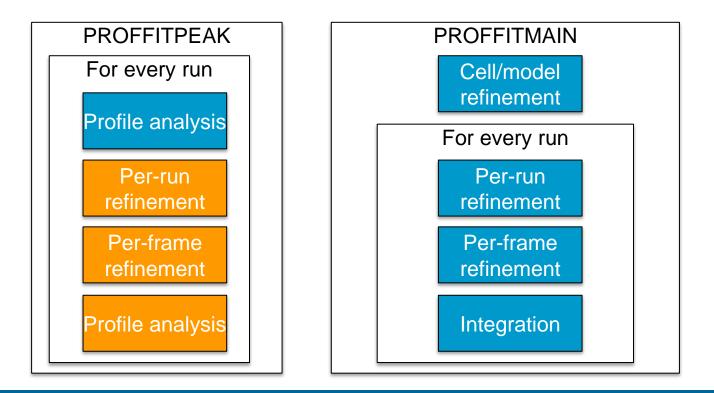


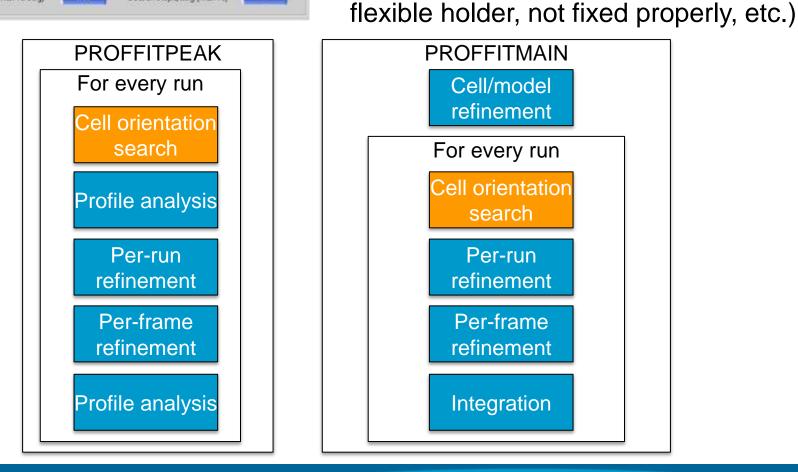

- Basic mode
- Single model for all data from one run
- Usually best choice for properly centered samples on a stiff holder



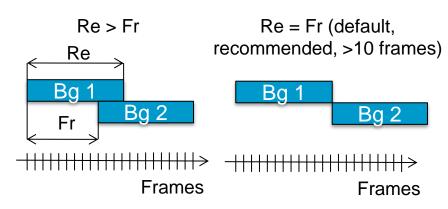

- "Per-frame" models
- Follows smooth crystal moving ("wobbling") with respect to the beam/detector
- Use if the indexation after peak hunting is above 90%, but spots are not fully covered by masks during integration




• Auto selects the optimal approach on run basis! Best default option



- 2-cycle PROFFITPEAK
- Covers more difficult "wobbling" cases

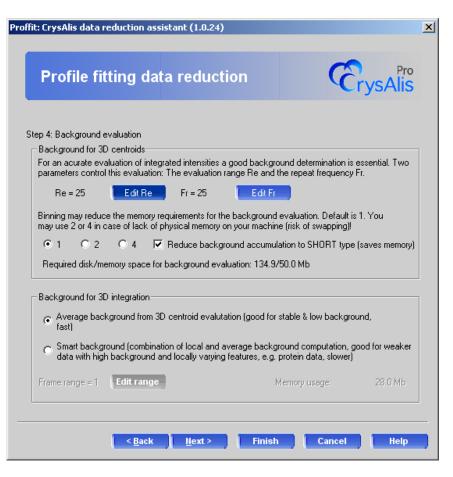

Model refinement with matrix

For discontinous sample jumps (LT,

orientation search

Data reduction wizard – background

• Average background (Re>10 frames)



• Smart background:

- local background recomputed on every frame and fitted individually for every spot

Frame range (1, 3 or 5 – more is impractical) Bg 1 Bg 2 Bg 3

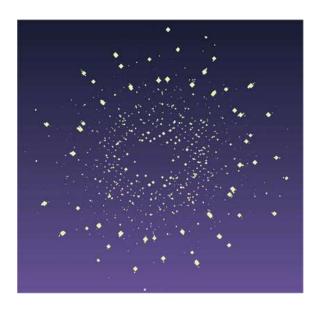
-+ -+ -+ -+ -+ -+ --- → Frames

Optimal data – hints at data reduction time

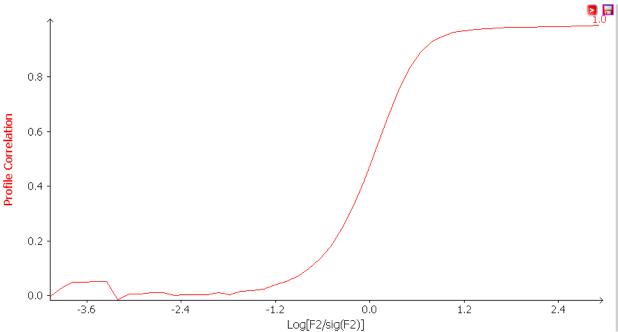
- Check for experiment artifacts (empty frames, trips)
- Apply Bravais lattice where obvious
- Special pars
- Use bad reflection filter
- Use reduced profile size if overlapping
- Incidence correction, prediction accuracy
- Smart background on high background data
- xx proffitloop

Special pars

Proffit special parameters	
3D intensity integration	Extra corrections
C 2D profile fitting (recommended only for very strong diffraction data)	Apply inverse float correction (f.ex. undo flood field correction)
 3D profile fitting (improves weaker data, default option) 	
Reflection positioning and integration Single wavelength only (recommended	Apply float correction (f.ex. additional flood field correction)
exclusively for data up to 1.5 Ang, i.e. large molecules)	Apply pixelwise absorption correction (prepared by DC ABSTORUN)
HKL check in 3D peak analysis (recommended when reflections are very close to each other)	Apply monitor renormalization Use file for monitor values
Skip filters	DC JETSHADOW (to visualize beforehand use 'beamstop mask')
Lorentz min = 0.0500 Edit Lorentz min	Use JetShadow Edit parameters
HP cell opening reject 40,00 Edit DAC angle	alpha: 30.00, beta: 0.00, jet_width: 13.00, jet_distance: 6.00
Use resolution limits Edit limits	Desfile fitting
d-value (Ang): inf- 0.79 2theta (deg): 0.00-153.74	Profile fitting Override integration mask size (generally not recommended, but smaller mask can be
Reject reflections with bad profiles (e.g. for HP data)	useful for strongly overlapping reflections e.g. size twins)
I/sig > 10 & Profile agreement < 0.8	Follow profile size changes with incidence angle
Extinction rules	Adjust masks according to prediction uncertainty (for high angle data)
No extinction rules specified Show rules	Print average profiles to history window
HINT: You can use DC EXTINCT to add extinction rules and DC CLEAREXTINCT to remove selected or all rules from the list	
	OK Cancel

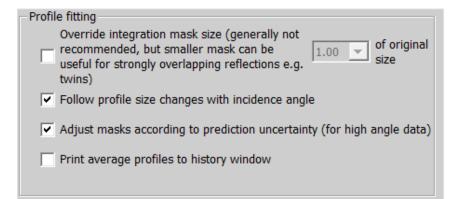

3D profile fitting

- Distorted rotation method data is mapped to 'Kabsch-space'. Similar like XDS, but more complex
- Strong reflection data serve as reference profile. No shape assumption is made!
- All data is profile fitted to the 'nearby' reference profile. For strong data this means summation, for weak filtering
- You may choose to take less/more than 4sig of reference profile



Special pars- outliers

- Filter intruders by correlation coefficient.
- All strong reflections are self similar.

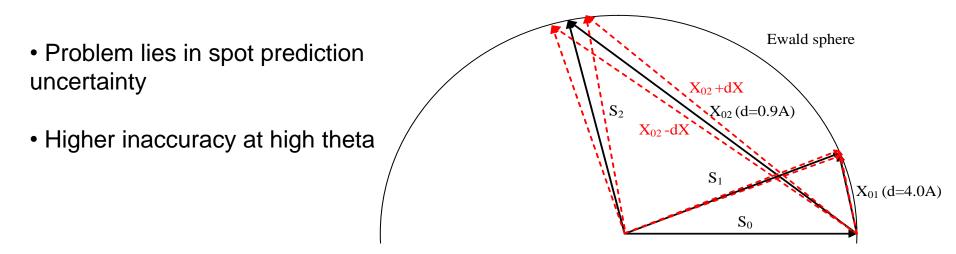


Special pars - incidence

Incidence	Aver	age	profile	size - a	assumin	g Gaussian sh	ape (in	degrees)		Т
angle (deg) #	of peaks	I	sig_e1	(stddev)	I	sig_e2 (stdd	ev)	sig_e3	(stddev)	Ι
		• 1			-					- 1
0-12.6	769	Ι	1.639	(0.304)	I	1.430 (0.2	33)	1.757	(0.880)	I
12.7-18.1	769	I	1.624	(0.354)	I	1.430 (0.2	42)	1.649	(0.875)	Т
18.1-22.5	769	I	1.624	(0.357)	I	1.431 (0.2	58) I	1.572	(0.828)	Т
22.5-26.2	769	Ι	1.594	(0.369)	I	1.414 (0.2	58) I	1.542	(0.839)	Т
26.2-29.9	769	Т	1.627	(0.372)	I	1.410 (0.2	82)	1.440	(0.736)	I
29.9-32.8	769	Т	1.630	(0.364)	I	1.382 (0.2	55)	1.391	(0.719)	Т
32.8-35.8	769	I	1.594	(0.341)	I	1.341 (0.2	67)	1.392	(0.708)	I
35.8-38.9	769	I	1.632	(0.349)	I	1.337 (0.2	66)	1.315	(0.594)	I
38.9-41.9	769	Ι	1.638	(0.330)	I	1.294 (0.2	69)	1.303	(0.659)	Т
41.9-51.6	769	Ι	1.618	(0.323)	I	1.221 (0.2	70)	1.188	(0.610)	Т
		• 1					1			- 1
0-51.6	7690	I	1.622	(0.347)	I	1.369 (0.2	69)	1.455	(0.769)	Т

Profile size analysis (per incidence angle)

Fitted profile normalization line parameters


e1 dimension: a=0.0022 b=0.99

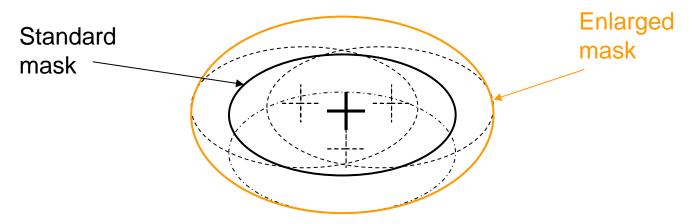
e2 dimension: a=-0.0019 b=1.08

e3 dimension: a=-0.0136 b=1.46

Prediction uncertainty – problem

For profile size of 0.8 deg integration mask size is 8 pixels at incidence angle 0 deg (Atlas detector, 2x2 binning, at 55 mm)

Detector theta (deg)	Std dev of misprediction (deg)	Std dev of misprediction (pix)	Max misprediction (pix)
11	0.014	0.13	0.78
24	0.02	0.2	1.2
40	0.025	0.25	1.5
111	0.04 - 0.08	0.4 - 0.8	2.4 - 4.8

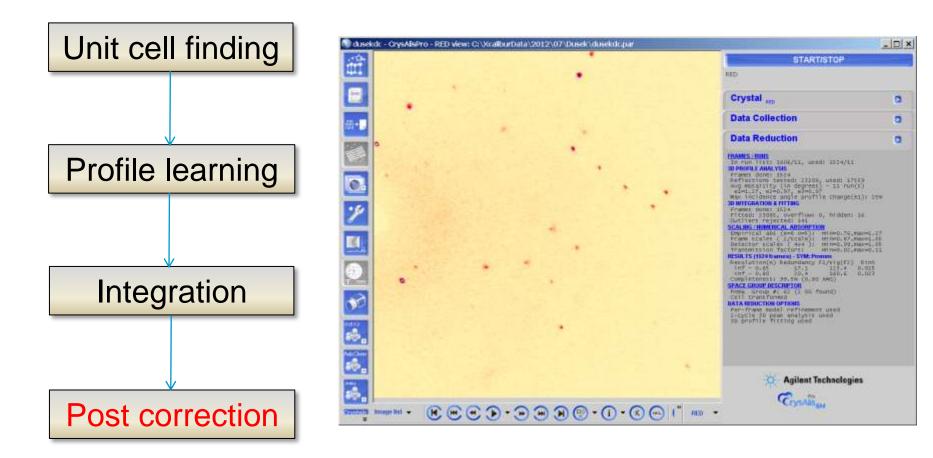


Prediction uncertainty – solution

• Estimate prediction uncertainty at given theta

Prediction ac	curacy statis	tic	s (in degrees)					
1			Average predic	tic	on error (in degrees)			1
Resolution	# of peaks	Ι	delta_e1 (stddev)		delta_e2 (stddev)	L	delta_e3 (stddev)	
		Ι				Ι		· ·
1.35-1.22	82	Τ	0.002 (0.020)		0.001 (0.013)	Т	0.003 (0.170)	1
1.22-1.14	82	Τ	-0.002 (0.025)		0.009 (0.016)	L	0.020 (0.165)	1
1.14-1.08	82	Ι	0.003 (0.024)		0.004 (0.020)	L	0.020 (0.175)	
1.08-1.04	82	Ι	-0.012 (0.034)		-0.002 (0.021)	Ι	-0.026 (0.153)	
1.04-0.99	82	Т	0.001 (0.026)		-0.003 (0.021)	L	-0.018 (0.153)	1
0.99-0.95	82	Т	-0.007 (0.033)		-0.005 (0.030)	Т	-0.004 (0.147)	1
0.95-0.91	82	Т	-0.005 (0.038)		-0.009 (0.029)	L	-0.001 (0.132)	1
0.91-0.87	82	Т	-0.008 (0.038)		-0.015 (0.041)	L	-0.002 (0.127)	
0.87-0.84	82	Т	0.006 (0.038)		-0.012 (0.041)	L	-0.016 (0.106)	
0.84-0.80	73	T	0.005 (0.051)		0.017 (0.087)	I.	0.002 (0.103)	1
		Т				Ι		· -
1.35-0.80	811	Ι	-0.002 (0.034)		-0.002 (0.038)	L	-0.002 (0.146)	1

• Enlarge integration mask according to prediction uncertainty


Automatic multi scenario data processing

- xx proffitloop
- Some 32+ processing combinations

eneral options	Single run	Multi-run	
Follow sudden (discontinuous) changes of sample orientation	🖲 Yes 🔿 No	F Both	Jump
Follow profile size changes with incidence angle	C (* C)*	🔽 Both	(inc)
Adjust masks according to prediction uncertainty	🧉 Yes 🔿 No	F Both	mask
Override mask size	C = C =	Foth 1	1.00 • (overmask)
Smart	C Yes 🛈 No	T Both	1
Additional info			
ummary			
Number of loops to complete a	siculations:	= 4	
Sample file name: tarkus_pl_jump_inc_mask_o	vermesk100		
the start of the s			

0.042684 0.000005 0.000005	Proffit: CrysAlisPro data reduction assistant (1.0.26)
Constraint UB - metrix: 0.200233 0.044603 0.024528	Profile fitting data reduction
M - matrix: 0.042671 0.000000 0.000000	Step 1: Orientation matrix for data reduction
UB fit with 21580 unit cell: 7.4567(2) 90.023(3) W = 1847.01 unit cell: 7.45768(9) 90.0 W = 1847.01 xx proffitloop	Landeau - Landea
Options RED	Lattice extinctions (liter Bravais lattice extinctions) Incommensurate structures
	Use filter for. Other (reduction list)
1.22	Twinning/Multi crystal (activated by UM TWIN entries)
	Back Vext> Finiah Cancel Help

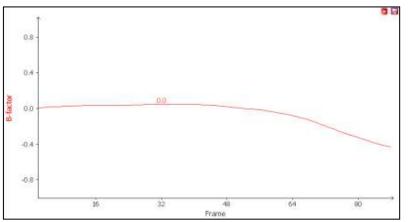
Typical data reduction sequence

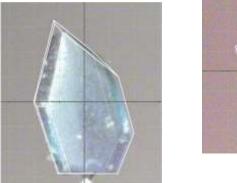
Data reduction (reflection integration) vs. data finalization

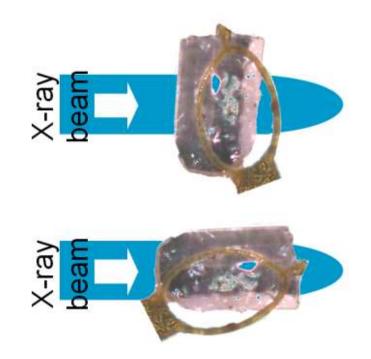
- Integration results land in: *.rrpprof
- Finalization results are *.rrpprof transformed to hkl and cif files.

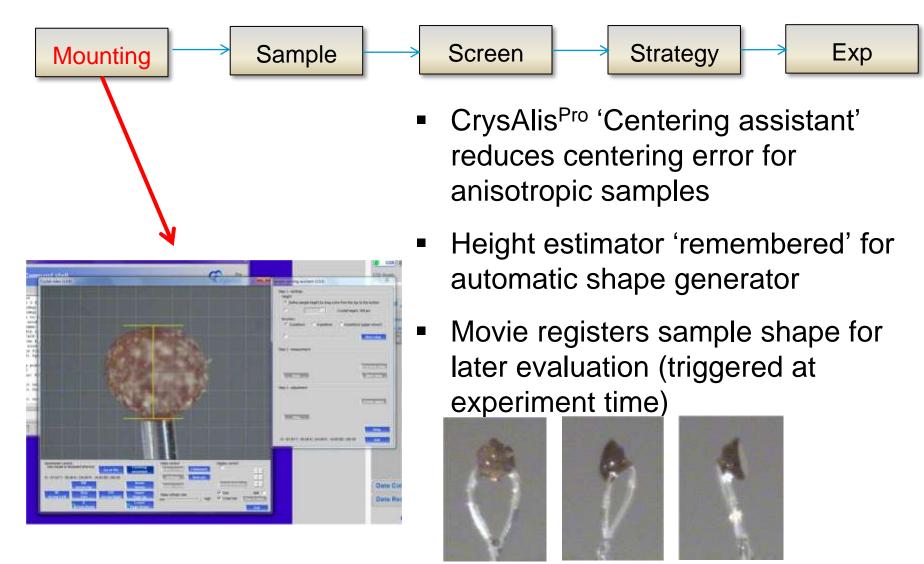
Post correction motivation

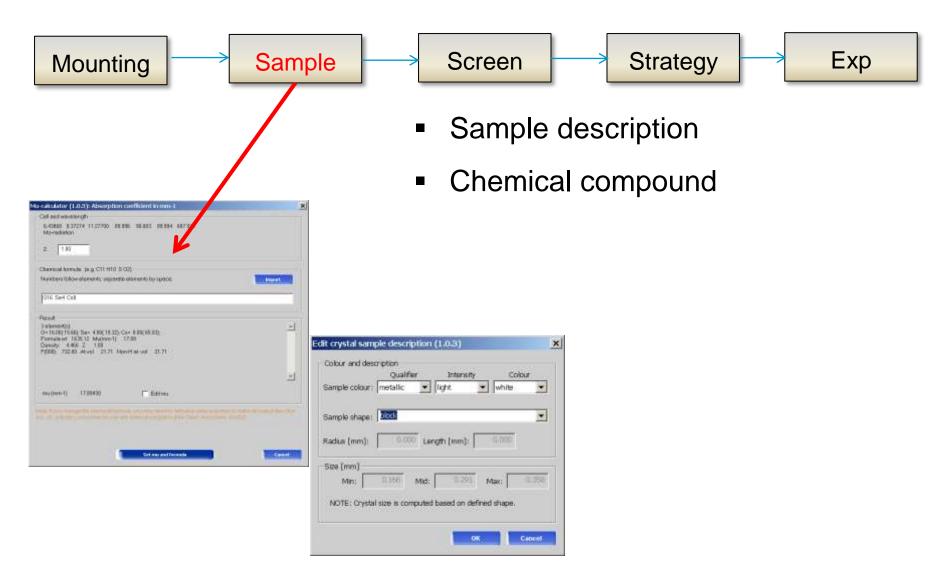
- Frame information to HKL file information
- Improve I/σ of redundant information
- Reduce 'systematic effects'

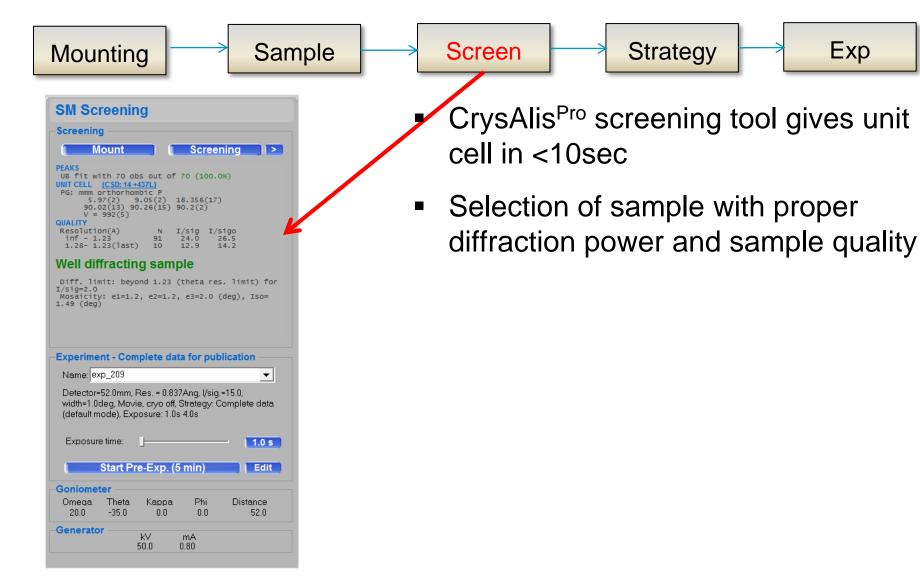

Note:

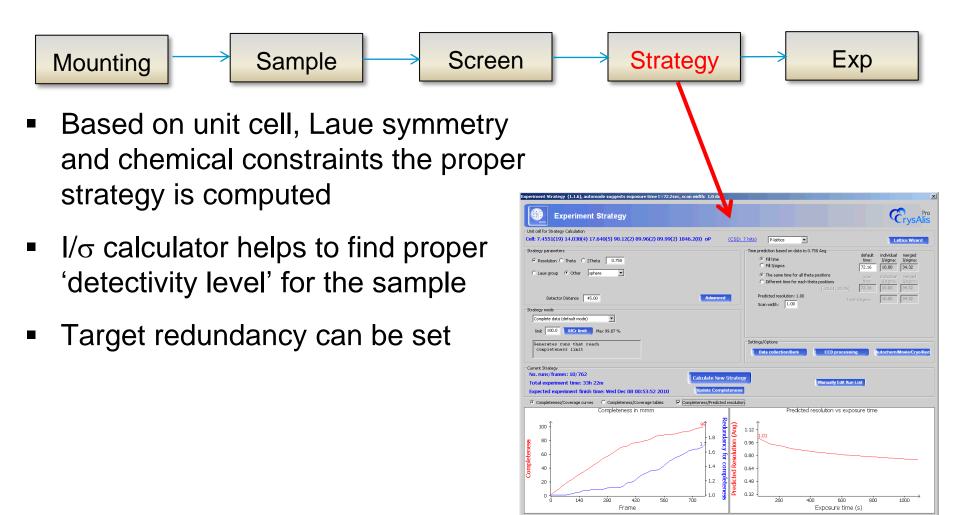

Post corrections can only correct observed data!

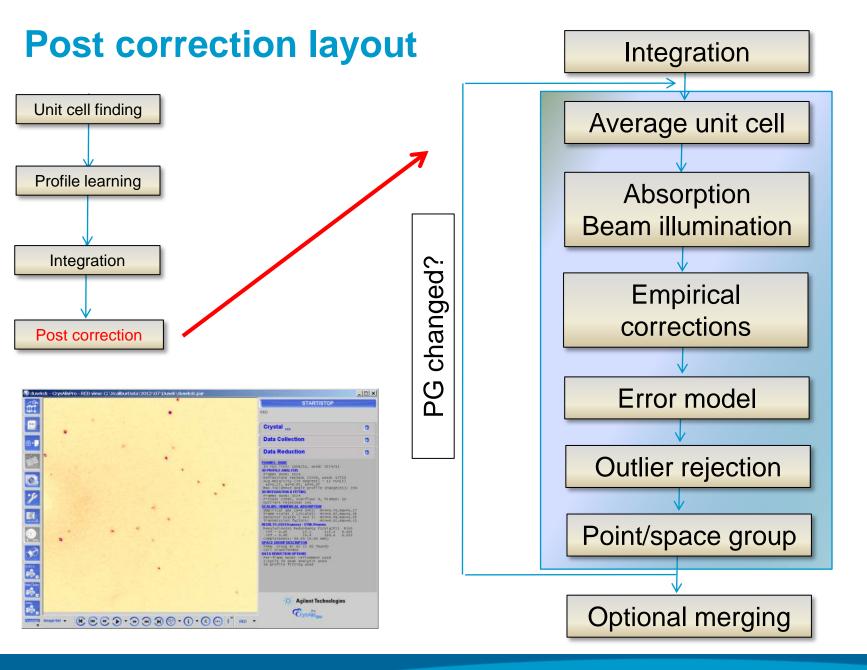

Systematic effects/Noise sources

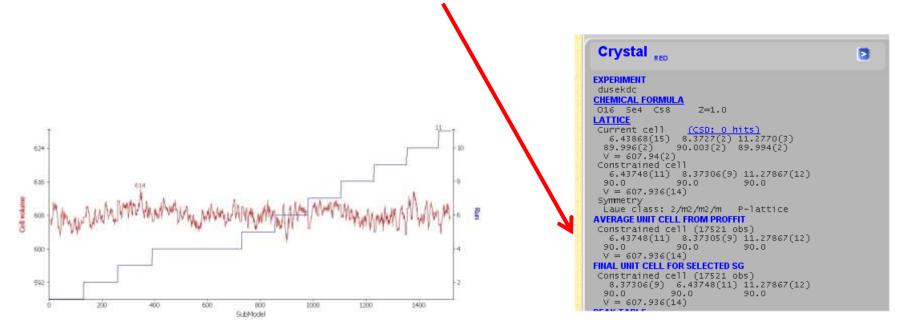

- Absorption (sample/holder)
- Beam illumination effects
- Sample centering
- Sample decay
- Experiment effects: cryo, generator
- Mounting technique









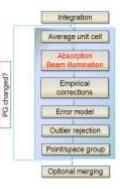

Help Start experiment Cano

Average unit cell from all data

- Post integration: most accurate model description available
- 3D profiles known
- All experimental aberrations are corrected for

Integration

Average unit cell Absorption Beam Illumination Empirical corrections Error model


Outlier rejection Point/space group Optional merging

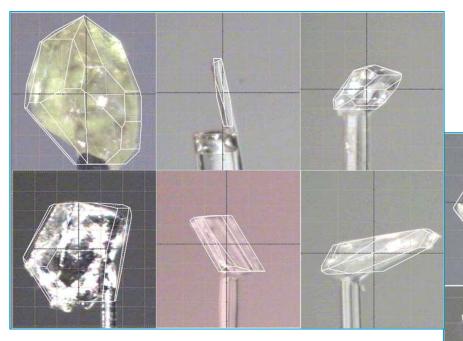
- Clark & Reid analytical formulation (allows shape optimization)¹
- Gaussian grid, numerical integration²
- Beam illumination
- High Pressure: Gasket shadowing, diamond correction³

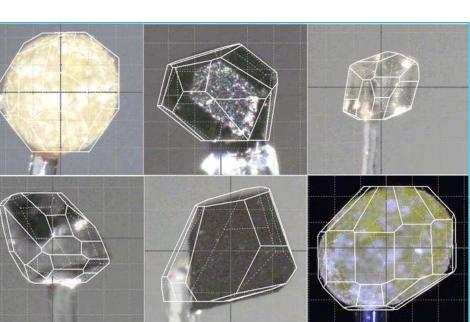
Note: Shape description and chemical composition have to be known!

¹Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897; ²Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182; ³Angel, R. J. (2004). J. Appl. Cryst.. 37, 486-492

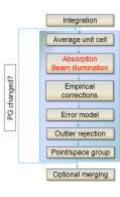
S DISPLAY - play recorded samp	ile movies (1.0.8)					
		Crystal shape to	obox			
		faces	Add shape Pre	eferences File	Log	Center calibration
			h H -1,00 -0,00 1,00 -0,00 1,00 -1,00 1,00 -0,00 1,00 -0,00 0,00 -1,00 0,00 -1,00 0,00 -1,00 0,00 -1,00 0,00 -1,00 0,00 -1,00 0,00 -1,00	L 4 0,00 6,19749 -1.00 0,17665 -0.00 0.20530 -0.00 0.20530 -0.00 0.17076 0.00 0.17076 -0.00 0.15477 1.00 0.00222 -1.00 0.13288 -0.00 0.15966 0.00 0.14533	sine 0,0278764 0,0065559 0,0055559 0,0195309 0,0366434 0,0195309 0,0366434 0,0172495 0,017388 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0072495 0,0095348 0,0075348 0,0075348 0,0075348 0,005534 0,005534 0,005534 0,005534 0,005534 0,0055 0,0055 0,0055 0,005	Pace Marking © Dreg C Paint Distance
		11 12 13 14	1.00 -0.00 1.00 -0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 0.18981 -1.00 0.19937 1.00 0.21243 -0.00 0.21243 -0.00 0.18341 Conter the Oto Set C	0.0077514 0.0033437 0.0098338 0.005730 0.005730 0.0058415	
		C XV2 G HSL Import	Tajart	- Crystel with (r-sq=6.1572 - Crystel dim min= 0.166.	v=0.0162744mm*3 mm.ps=2.81242.p=17 msices (mm) mid=0.291, max=0.35	8
57.00 T - 30.00 K, 134.00 P-114.00 500.00 500.00 500.00	#12 Ready X 504 Y 651 IF Show tool window	Chepboard Chepboard Help Exit	×37 Y29	80 💶	Edit	ew Crystal front Crystal back Grid Grid Piec exee Cross har Face normals

Integration

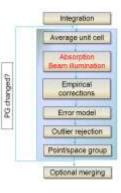

Average unit cell Absorption Beam illumination


Empirical corrections Error model Outlier rejection Point/space group Optional merging

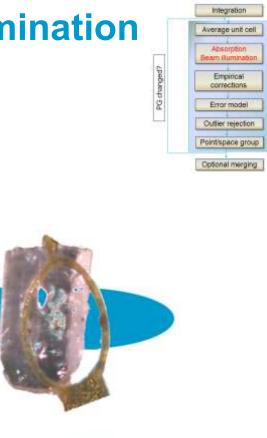
PG changed?


Shape building takes time... Automatic?

Auto shape

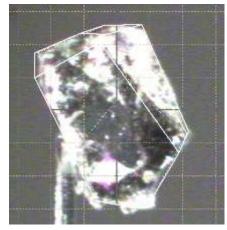


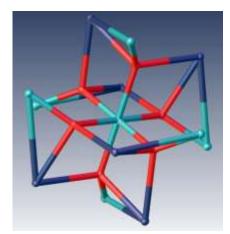
pe of absorption correction selector	×	Type of a
Analytical absorption correction after Clark & Reid		C Analyt
 Gaussian grid absorption correction (Numerical Integration) Schlassensors 		(Gaussi
e 🔟 y 🔟 z. 💷 🗗 🖓 Equal to all detectors.		ят
Simusian grid griantation Grigotal avation Chargent diaganal Chargent solge		Ga
Beam profile connection		Bes
Graphile monochrometer (Enterice) - JD for scribt) gaunslef Collimater size Collimater size Collimater size Collimater size Collimater size		
🗲 Merces Barco, Maria Albaro – 20 gartanan 🗲 Matanan		
Beauty all a + P20-32 Sur A 253 East Descended beauty dia Geodetics profile (here) 0.57 East vertical learning		ii X
OK Cancel		

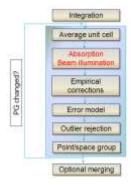

ussian grid absorption correc	tion (Numerical Integratio	n
Grid dimensions		
x: 10 1	7- 10	Equal in all direction
Gaussian grid orientation		
Grystal system		
C Longest diagonal		
C Longest edge		
Beam profile correction		
Apply beam profile co		
	ator (Erihance) - LD horiz	
		C.06mm 6.10mm
C Menora Garva Mora	(UV) - 201 (Bettera)	
C Fatherine		
Beam sets - Prineful for Gesenlers profile (mint)	TER boris	ontal beam dia
- and a second s	144 ver	inal beam dia

¹Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897; ²Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182

/pe	of absorption correction s	elector				×
07	Analytical absorption correction a	after Clark	& Reid			
•	Gaussian grid absorption correcti	on (Nume	rical integration			
	x: 10 y: 10		z; 10	🔽 Equa	l in all directions	
	<u> </u>					
	Gaussian grid orientation ——		7			
	Crystal system					
	🔘 Longest diagonal					
	C Longest edge					
	Beam profile correction					
	Apply beam profile corr	ection				
	🔘 Graphite monochroma	tor (Enhar	nce) - 1D horizo	ntal gaussiar		
	Collimator size: 🔿	0.3 mm	🜔 0.5 mm	🜔 0.8 mm 🛛 🤇	🗊 1.0 mm	
	💿 Mirrors (Nova, Mova, U	Jltra) - 2D	gaussian			
	🔿 Flat beam					
	Beam size - FWHM for Gaussian profile (mm):	0.50	Edit horizo	ontal beam dia		
		0.50	Edit verti	cal beam dia		
				ок	Cancel	

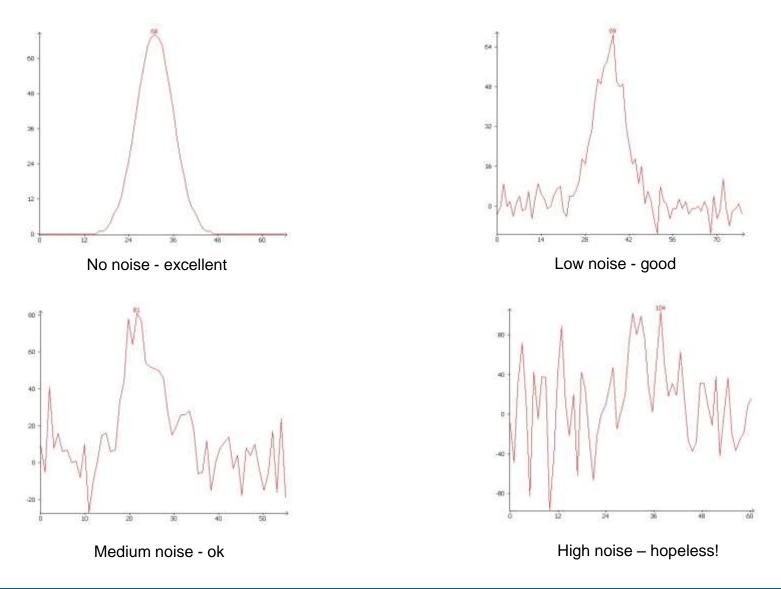





X-ray

bear

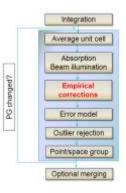
T١



ytrium_mo – inorganic (Y3Al5O12),
Mo, μ=20.3mm⁻¹, redundancy=3U (Ia-3d), Nova micro-sourceMo, μ=20.3mm⁻¹, redundancy=3U (Ia-3d), Nova micro-sourceR1No correction50%7.88.9%Absorption +
beam illumination20%9.83.4%

Post corrections can only correct observed data!

Strategy dilemma: redundancy vs. time


Experiment Strategy (1.1.6), automode suggests exposure time t=72.2sec, scan width: 1.0 deg	×
Experiment Strategy	Pro CrysAlis
Unit cell for Strategy Calculation	
Cell: 7.4551(19) 14.038(4) 17.640(5) 90.12(2) 89.96(2) 89.99(2) 1846.2(8) oP (C:	SD: 7 hits) P-lattice Vizard
Strategy parameters	Time prediction based on data to 0.750 Ang
Resolution O Theta O 2Theta 0.750	C Fill time default individual merged time: I/sigma:
C Laue group Other sphere	Image: Constraint of the same time for all theta positions 72.16 10.00 34.32 Image: Constraint of the same time for all theta positions your individual merged Image: Constraint of time for each theta positions time: 1/sigma: 1/sigma: Image: Constraint of time for each theta positions time: 10.00 34.32
Detector Distance 45.00 Advanced	Predicted resolution: 1.00 Total I/sigma: 10.00 34.32 Scan width: 1.00 34.32 34.32 34.32
Strategy mode	
Complete data (default mode)	
limit 100.0 UCr limit Max 99.87 %	
Generates runs that reach	Settings/Options
completeness limit	Data collection/Dark CCD processing Autochem/Movie/Cryo/Red
Current Strategy	
No. runs/ frames: 10/762 Calculate New Str.	atagu
Total experiment time: 33h 22m	Manually Edit Run List
Expected experiment finish time: Wed Dec 08 00:53:52 2010 Update Completen	ness
Completeness/Coverage curves C Completeness/Coverage tables ✓ Completeness/Predicted reso	
Completeness in mmm	Predicted resolution vs exposure time
100 - 100 - 1.8 80 - 1.6 1.6 rompleteness 40 - 1.4 1.2 rompleteness 1.2 rompleteness 1.0 rompletenes 1.0 romplete	1.12 [↑] 1.01
	0.96
1.6 Completeness 1.6 Completeness 1.6 Completeness 1.6 Completeness 1.6 Completeness 1.7 Completeness 1.4 Complete	0.80 -
	0.64 -
20 - 1.2	
i i i i i i i i i i i i i i i i i i i	200 400 600 800 1000 ´ Exposure time (s)
	Help Start experiment Cancel

Empirical correction: logic

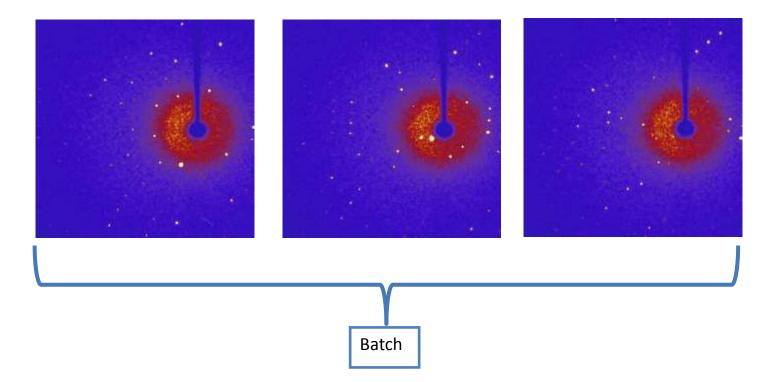
- Scaling
- Empirical absorption based on spherical harmonics
- Decay
- Detector sensitivity

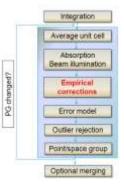
 $I_{aver} = \Sigma I_{corr_prev,i}$

$$\begin{split} I_{corr,1} &= C_1 I_1 \qquad \Delta_1 = I_{aver} - I_{corr,1} \\ I_{corr,2} &= C_2 I_2 \qquad \Delta_2 = I_{aver} - I_{corr,2} \\ \downarrow \\ I_{corr,n} &= C_n I_n \qquad \Delta_n = I_{aver} - I_{corr,n} \end{split}$$

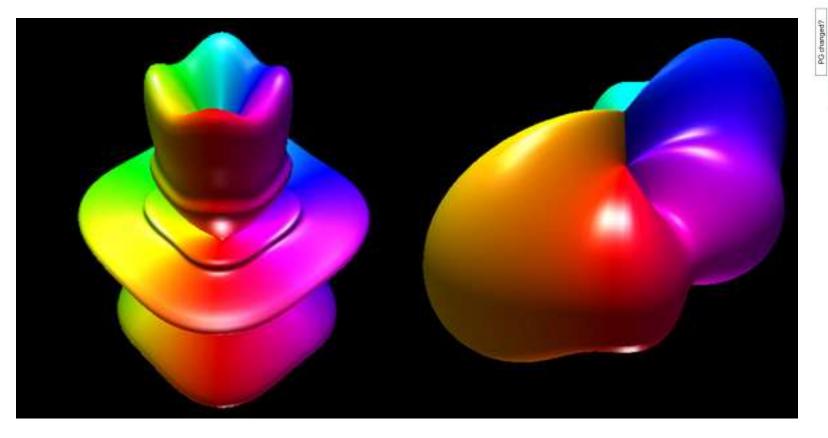
Note: Redundancy is the key ingredient!

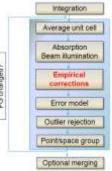
Play modes


- Scales
- Empirical
- Decay A, B
- Sensitivity

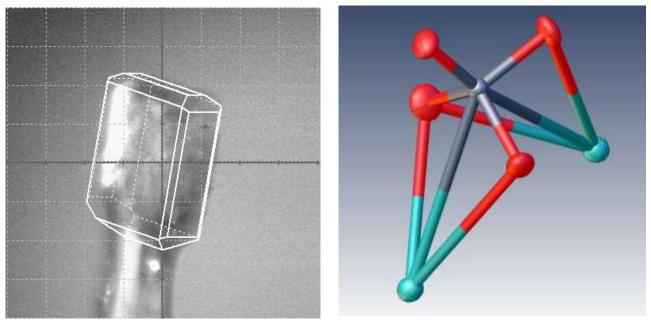

cale3 abspack (1.0.7) - Refinement of scales, emp. absorption and sensitivity
hkl-file:D:\Data\protein\remeasure\run1.hkl
Output dir D:\Data\protein\remeasure
Symmetry settings
Use Friedel mates as equivalent even for noncentrosymmetric SG
LS refinement control
SigCut: 7.00
Exclude 5 strongest unique reflections (along with all symmetric equivalents)
Frame scaling B-factor/A-factor refinement
Automatic frame scale assignment 🔽 Apply frame scaling 🔽 Refine B-factors
How many frames have a common scale?
Variation restraint (ESD): 0.20000
Reject frame scales< 0.20 & > 5.00
Empirical absorption correction
Automatic parameter selection for absorption correction
Max even order: 8 💌 Max odd order: 0 💌 44 parameters
Absorption correction before frame scaling (recommended for strong absorbers)
Detector area scaling
How many detector area regions?
Variation restraint (ESD): 0.20000
Help OK Cancel

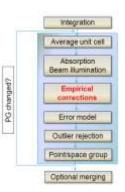
	Integration
	Average unit cell
1	Absorption Beam Illumination
	Empirical corrections
	Error model
-	Outlier rejection
	Point/space group


Play modes: scales



Play modes: Spherical harmonics





http://paulbourke.net/geometry/sphericalh/ Blessing, R.H. (1995). Acta Cryst. A51, 33-38

Empirical vs. Numeric Absorption

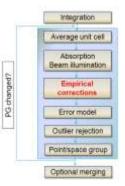
dusekdc (Michal Dusek) – inorganic (Cs_2SeO_4), Mo, μ =17.9mm⁻¹, redundancy = 4.5 (Pna2₁)

	R _{int}	l/σ	R1
No correction	14.4%	18	8.3%
Empirical	4%	20.4	3.3%

Empirical vs Numeric Absorption

	integration
10	
	Average unit cell
	Absorption Beam Illumination
PG changed?	Empirical corrections
	Error model
	Outlier rejection
	Point/space group

dusekdc (Michal Dusek) – inorganic (Cs ₂ SeO ₄),	,
Mo, μ =17.9mm ⁻¹ , redundancy = 4.5 (Pna2 ₁)	


	R _{int}	l/σ	R1
No correction	14.4%	18	8.3%
Empirical	4%	20.4	3.3%
Numeric (faces)	2.6%	25	1.92%
Both	1.85%	28	1.81%

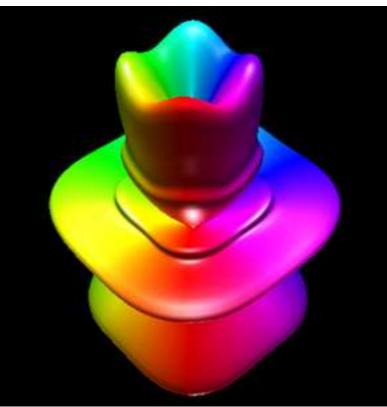
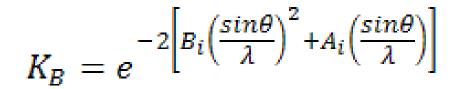
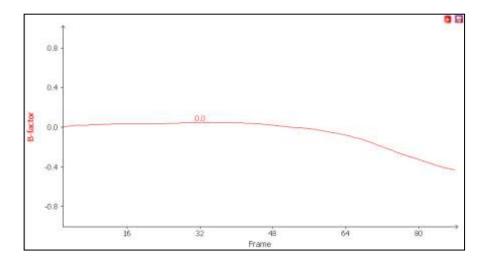
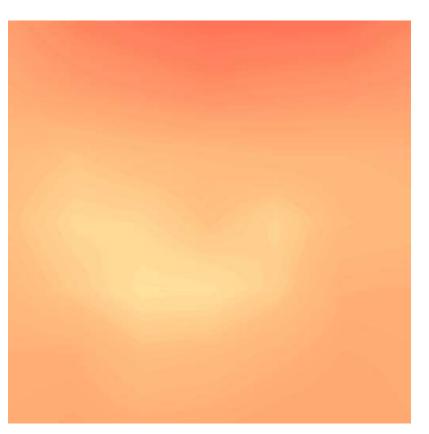


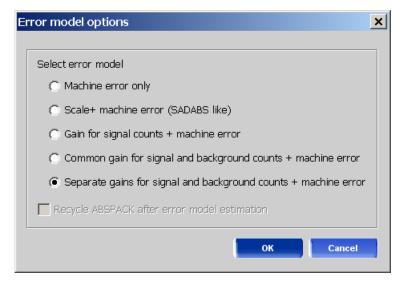
IMAGE: dusekdc_1_77.img (run: 1 frame: 77) Omega: 71.0000 Theta: 33.0000 Kappa: 80.0000 Phi: 0.0000

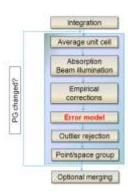


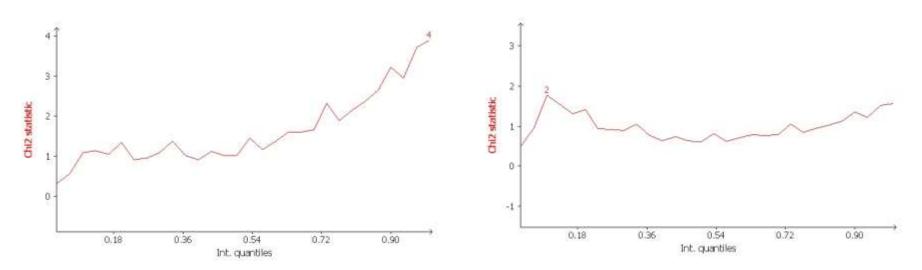




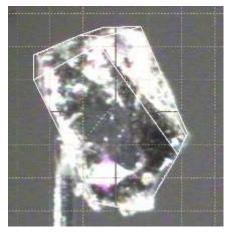
Play modes: Decay and detector sensitivity

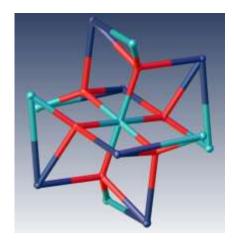


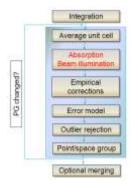




Error model fitting



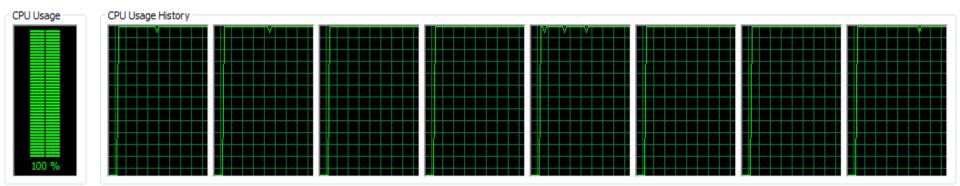




All corrections together...

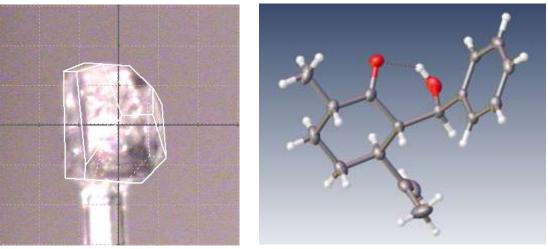
ytrium_mo – inorganic ($Y_3AI_5O_{12}$),
Mo, μ =20.3mm ⁻¹ , redundancy=30 (Ia-3d) , Nova micro-source


	R _{int}	l/σ	R1
No correction	50%	7.8	8.9%
Empirical	35%	8.5	7%
Absorption + beam illumination	20%	9.8	3.4%
Abs. + beam ill. + empirical	13.6%	11.6	2.4%



Multi – core

- All absorption and beam illumination computation
- All empirical corrections
- Auto shape generation
- Shape optimizer
- All matrix operations for Least squares

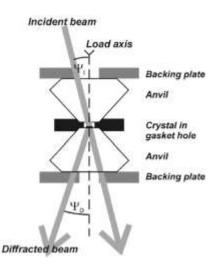


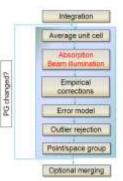
What a blessing...

A very normal Cu data set

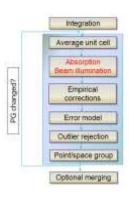
Schott (Peter Jones) – organic ($C_{17} H_{22} O_2$), Cu, μ =0.58mm⁻¹, redundancy=7.4 (P2₁2₁2₁)

	R _{int}	l/σ	R1
No correction	10%	23	3.73%
Empirical	2%	34	2.93%
Empirical + Numeric	2%	34	2.93%


Proper space group for empirical corrections



'Face-based': Diamond anvil cell correction


- Absorption
- Gasket shadowing
- Backing plates

Angel, R. J. (2004). J. Appl. Cryst.. 37, 486-492

'Face-based': Diamond anvil cell correction

	the second s	Carpelled Mague Inc. Boos	
1 0.00 -17.74 4.20 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070724 0.07021 0.070124 0.07021 0.070124 0.07021 0.070124 0.07021 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.070124 0.071124 <th>1199.AV - play recorded sample modes (1.020)</th> <th>Pasan Addrahape Preferences File Log Center editor</th> <th>be addance .</th>	1199.AV - play recorded sample modes (1.020)	Pasan Addrahape Preferences File Log Center editor	be addance .
		1 0.09 -17.74 4.23 0.09720 0.0999794 Marking 0 0.96 5.07 24.17 0.0014 0.0999794 0.0199794 0 0.07 26.17 0.040 0.0199794 0.01997794 0.01191 1 0.27 26.17 0.040 0.0199794 0.01191 0 0.01191 4 -0.15 1.01 -26.46 0.05040 0.0399871 0 0.0399871 0 0.0399871 0.0399871 0.00104413 Cintered 0.01014413 Cintered 0.01014413 Cintered 0.01114413 Cintered 0.01114413 Cintered 0.01114413 Cintered 0.0111413 Cintered 0.01114133 Cintered	ning oard ui
		Lee Avertific Constituent Destroyed	
		(19/18 0 (19/18 0	

- Movie based sample shape
- Gasket hole
- Mutual offsets

'Face-based': Diamond anvil cell correction

	The other had a second se
	C Analytical absorption correction after Clark 8-Reid C Gaussian grid absorption correction (Numerical integration) C Gaussian grid absorption correction (Numerical integration)
orb parameter dialog (1.0.2)	Gaussian grid absorption correction (Numerical integration)
aclamer: CrysAlaPro offers an interface to Ross Angle's HF cell correction program 'absorb'. Aglent a not responsible for the ful branch and cannot guarantee the relevance, completeness or accuracy of this program.	inclusing of 2 Error mo
Automatic generation of abooto input file	of III of III of III of Each of a control of Contorn
First. The sample shape and gasket information are derived from 'abs display' and can be modified there	Pointspace
High pressure cell type TYPE t	
HP cell opening angle 'sw a' = 40.0	Cptional ma
Gadat	G Carls and
Material USERMaterial mu [mm-1] = 21.0	Ent.
Gasket thidness and radius [microne] = 300.0 300.0	Current of a
Damonds Two arwite assumed identical C Two different arwite (1: moders, 2: diffractud)	
Avvi 1/2 thickness [mm] = 105	Beam profile correction
	EAK Constant
Backing plate	🗸 station voorteprote Scheren - 12 in antik saare
Those Characteristic Characteristic reset a characteristic	Commun Colme Colme Colme
Pare Externa (Amiliani Amiliani (2010)	Concerding Max Max (1991) - 27 pression
Shape aption (Warning: shape should be defined in abs display)	C Fathar
C Closed shape with faces C Closed shape with com	MT1
Variual generation of about prior file	Tanan ass - F3/477 for (102) Tan Internationer de Gaussierspecifie (n.m.)
TITLE ans	Last wette at because day
"Absorb input file generated by CryskilsFro"	High pressure call correction (based on external program "attach" by Ross Angel)
DAG TIPE 1	High pressure parameters
YELL 6,2947 12,0011 17,6345 90,00 97,53 90,00 TBL 0,1116136159 -0.0004161222 -0.0018160092	Absorb settings saved in mm (at_exp)
ML 0.0196677336 0.0090013455 0.0396351101	
Saing	
Current experiment C System	
	Automatically apparated input
	 Automatically generated input
Abort Web	
	files for Absorb 7.0

Fully integrated to workflow

Integration

Average unit cell Absorption em illumine Empirical corrections Error model **Outlier** rejection Point/space group Optional merging

Integration with external programs

Olex2 _ 5 × Elle Yew Structure Mode Tools Edit Model Select Help 21/m ania1 C28H32CUHgN12Sa 0 3 / 3 0 a=9.3673(3); b=25.0701(3); c=14.7153(5)Å 4.01% a=90" (= 100.663/07" y=90 Mean Mr 23.8 111 86 81% View Infa Work Report / Ballok Ong / Toke Only / Bauth Only / STOP / Gut USER PHIL Salution Program Bolistian Mathod Auto · Auto . Reforment Metho Refrement Plogram Auto + Auto . SOLUTION STAGE -> Shall(2), Patterion Method (0 64 v) VSS = 77, VATA = 36 REFINEMENT STAGE --* Keration () #1 - 31.331; ATA - 14 -- Retailors 1 R1 - 0.05%, ATA = 27 -- Lotation 2 BT - 2, 15 L ATA - EU -> forsition 3 Btl = 6.61% ATA = 55 -> hanging 4 Rt - 6.33% ATA = 53 Continue7 conside 01 + notif. 11'3 + inst21.82'0 ==> 10.2 (6.3) Yes SECONDARY REFINEMENT STAGE As/somopic Sensible? Rt = 1.111, 0.95 VES -> Relation of RI + 4.81%; STA = 55 -> Resultion 12 R1 = 4.585; ATA = 00 -> heading fi R1 - 4.01%; POLISHING STRUCTURE --- Xeratum #1 Rf - 4.8176 Finished with ATA - 59 and 81 - 1.01 - ' (21.2 st R1 = 0.0459 for 6350 unique reflections after merging for Fourie Highest peak 2.75 at 0.4141 0.1483 0.7021 [0.98 A from ! Deepest holo -1.33 at 0.3676 0.0921 0.7434 [0.80 h from/ 61 1 ******** finished at 15:59:41 Total CPU time: + anial 2. 0005 * 22.33 8.65 7.15 5.61 6.33 4.04 4.51 4.5 4.01 4.01 Refinement CTF file has been merged with the meta-data wif file

Summary - corrections

- Post corrections for area detector are instrumental for good data quality
- Redundancy enables most of those correction (Red>3 good start)
- We can only correct observed data! Use right exposure and technology (source, detector)
- For absorbing samples (μ>5mm⁻¹) numeric face based corrections are very necessary. Take the effort!
- For samples with μ<5mm⁻¹ generally empirical corrections are sufficient! Anisotropic sample may require beam illumination correction, especially with micro-sources!
- Use modern mounting technology!
- CrysAlis^{Pro} workflow integration helps to get most from corrections

Data finalization – optimal data

- Problems with...
- Experiment
- Unit cell
- Data reduction
- Finalization
- Pseudo symmetry, twinning, incommensurate

Approach a data set...

Inspect executive tab

- Warning signs:
- Run list incomplete
- High mosaicity
- Scaling unusual
- I/sig low; low redundancy
- SG issues

Data Reduction

FRAMES/RUNS In run list: 402/7, used: 340/6

3D PROFILE ANALYSIS

Frames done: 340 Reflections tested: 2178, used: 1568 Avg mosaicity (in degrees) - 6 run(s) e1=1.10, e2=1.11, e3=1.31 Max incidence angle profile change(e3): 11% 3D INTEGRATION & FITTING

Frames done: 340 Fitted: 2231, overflow: 0, hidden: 15 Outliers rejected: 1

FINALIZATION INPUT FILE Filename: mm

FINALIZATION OUTPUT HKL FILE Filename: mm

<u>SCALING / NUMERICAL ABSORPTION</u> Empirical abs (e=2 o=0): min=0.99,max=1.01 Frame scales (1/scale): min=0.97,max=1.05 Friedel pairs treated as equivalent

RESULTS (340 frames) - SYM: Pmmm

Resolution(A) Redundancy F2/sig(F2) Rint inf - 0.80 1.9 26.7 0.030 inf - 0.84 2.0 27.9 0.030 Completeness: 95.8% (0.84 ANG) Anom compl.: 83.6% (P222)

SPACE GROUP DESCRIPTOR
P2(1)2(1)2(1) Group #: 19 (3 5G found)
no data coverage: h00, 0k0,

DATA REDUCTION OPTIONS Per-frame model refinement used 2-cycle 3D peak analysis used 3D profile fitting used

Approach a data set...

- Run 'Full auto analysis' on all data
- Concurrent may get stuck

Load new experiment

Full auto analysis (cell, red)

Automatic data reduction

Data reduction with options

Approach a data set...

- Inspect frames:
- Low/high background
- Diffuse scattering, split reflections, twin
- Empty frames, strange frames
- Inspect movie:
- Sample mounting

Optimal data – hints at experiment time

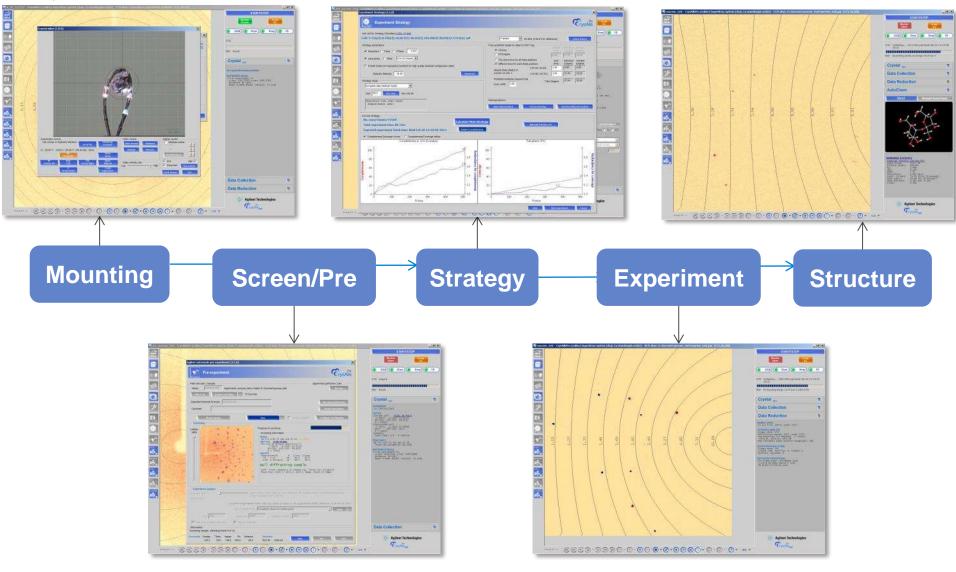
- Centering/Sample choice/holder/amount of oil
- Low T: de-ice runs
- Absorption: make movie 1-6 deg
- Concurrent data red re-start
- Cu Mo choice
- Collect redundant data
- Rather reduce scan width than increase dd
- Check your diffraction limit

Optimal data – hints at unit cell finding time

- Check for non-indexing reflections
- Garbage (ice rings, powder), twin, sample jump
- Re-run refine model
- Ewald
- Use filters (intensity, lattice type) and groups
- Use intensity view
- Check chemical formula unit cell consistency

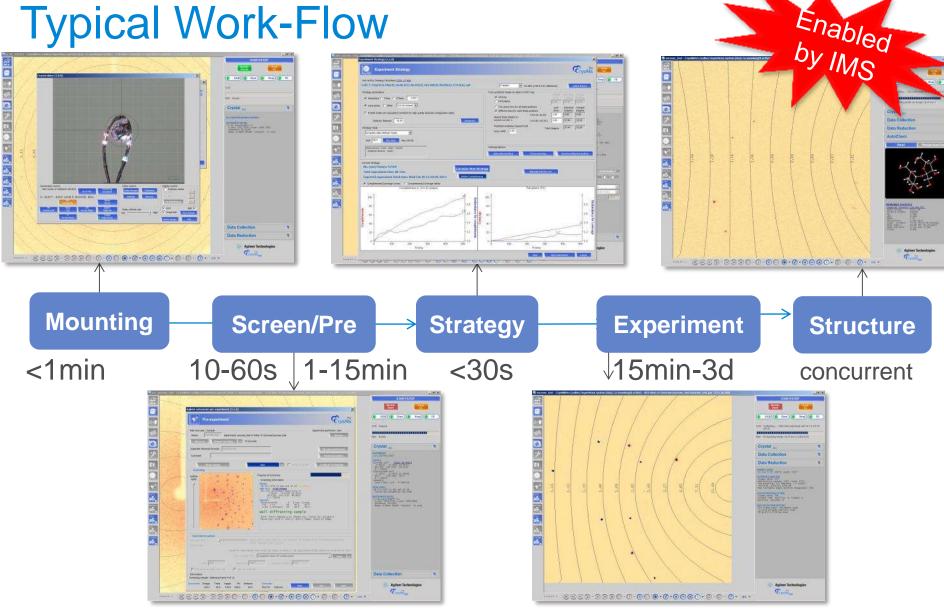
Optimal data – hints at data reduction time

- Check for experiment artifacts (empty frames, trips)
- Apply Bravais lattice where obvious
- Special pars
- Use bad reflection filter
- Use reduced profile size if overlapping
- Incidence correction, prediction accuracy
- Smart background on high background data
- xx proffitloop

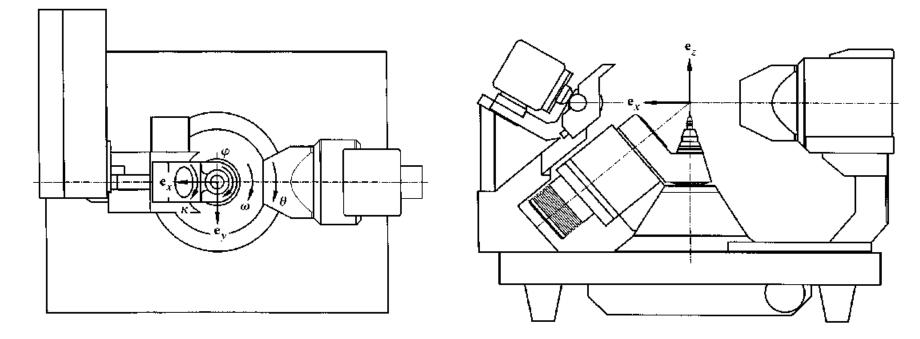


Optimal data – hints at data finalization time

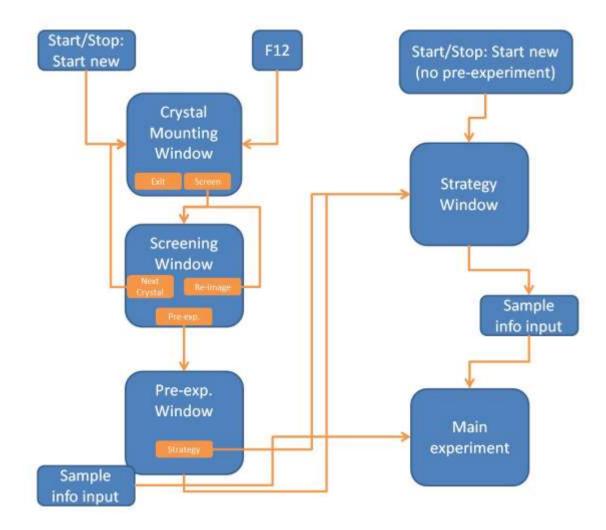
- Hand set empirical parameters
- Use shape based absorption correction
- Apply filters carefully (e.g. Rint)
- Interactively decide space group
- Remove unnecessary data via d-value filter



Typical Work-Flow



Typical Work-Flow

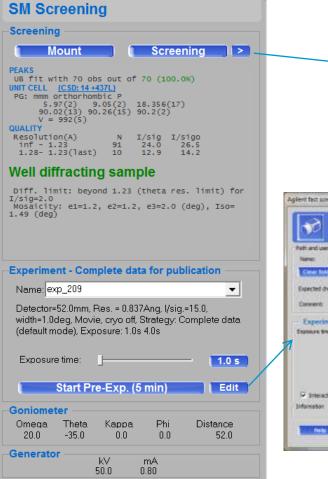


Excursion - instrument

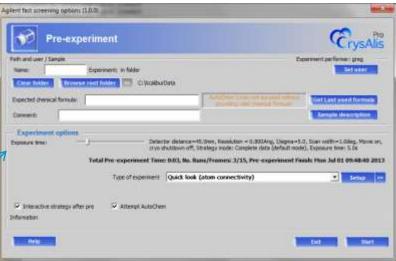


Simplified 3-Step Pre-Experiment Work-Flow

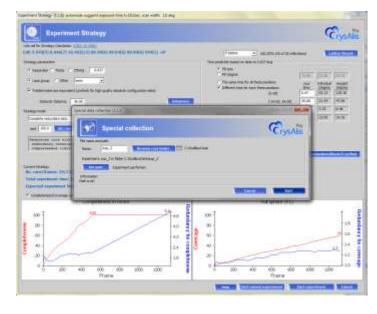

Tab Based Screening 1



SM Screening						
Screening						
Mount Screening >						
<pre>PEAKS UB fit with 70 obs out of 70 (100.0%) UNIT CELL (CSD: 14 +437L) PG: mmm orthorhombic P</pre>						
Well diffracting sample						
Diff. limit: beyond 1.23 (theta res. limit) for I/sig=2.0 Mosaicity: e1=1.2, e2=1.2, e3=2.0 (deg), Iso= 1.49 (deg)						
Experiment - Complete data for publication						
Name: exp_209						
Detector=52.0mm, Res. = 0.837Ang, l/sig.=15.0, width=1.0deg, Movie, cryo off, Strategy: Complete data (default mode), Exposure: 1.0s 4.0s Exposure time:						
Start Pre-Exp. (5 min)						
Goniometer						
Omega Theta Kappa Phi Distance 20.0 -35.0 0.0 0.0 52.0						
Generator						

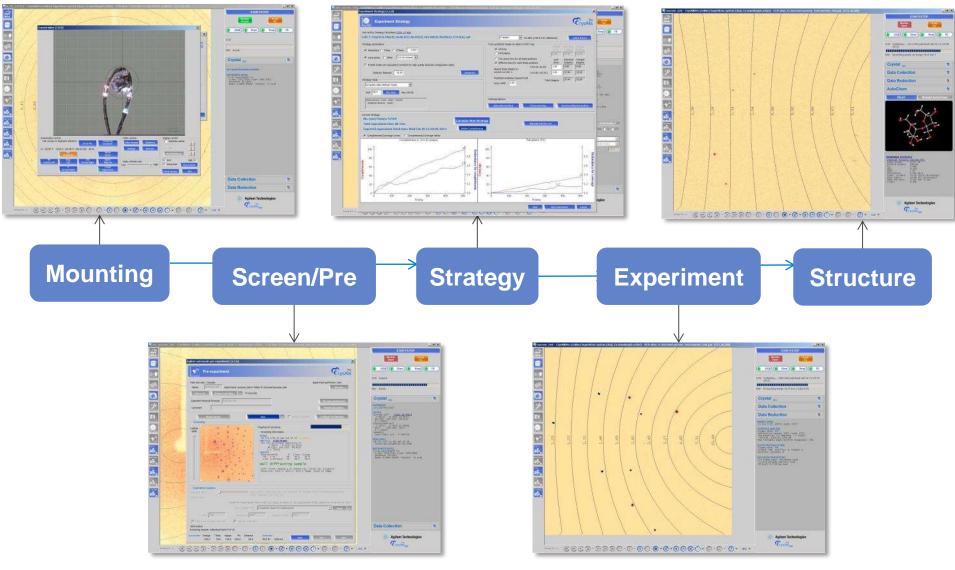


Tab Based Screening 2


Scenergy	Agente Beta	35.1 Harris	61 6288
Parattert	o er minnetanna	0.0	- 40 E 80
Expisient Exposer	ne]	2	Dark & Availing
Peakros a	factoring and)	- theop	C Resturn of
Vacionee	etros	Cetarater	
chevale			

Tab Based Screening 3

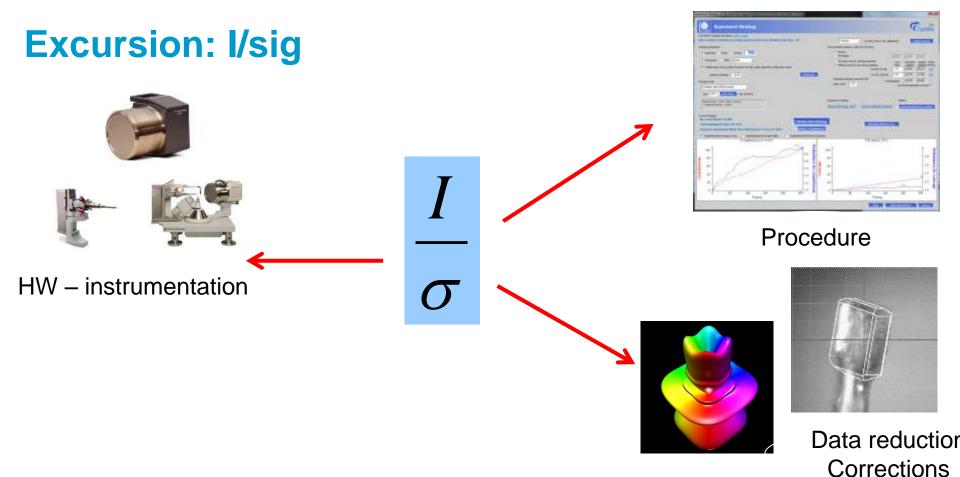
	Command shell	Pro ProSAlis
F	ED CCD Force auto scroll	Transparent
	C PRE ACTION: Call PreExperiment Dialog (Init) C PRE ACTION: Init dialog collision check at 45.0mm collision check at 45.0mm C PRE ACTION: New experiment name: exp_204 C PRE ACTION: START button was pressed collision check at 45.0mm collision test. OK PREEXP4: changed run order 1 -> 0 (drive time 18 -> 10; already saved 8 [s]) REEXP4: changed run order 5 -> 1 (drive time 18 -> 10; already saved 8 [s]) REEXP4: changed run order 3 -> 2 (drive time 19 -> 18; already saved 17 [s]) REEXP4: changed run order 7 -> 6 (drive time 18 -> 13; already saved 32 [s]) REEXP4: changed run order 8 -> 7 (drive time 18 -> 13; already saved 14 [s])	•
	C PRE ACTION: Set current directory to: C:\%caliburPata\exp_201 C PRE ACTION: Experiment file name: exp_204 CC PRE ACTION: Write run list C PRE ACTION: Experiment detector distance: 45.00 CC PRE INFO: Experiment C:\%caliburData\exp_204\pre_exp_204.run CC PRE INFO: Expected chemical formula CC PRE INFO: Interactive strategy after pre-experiment: 1	•



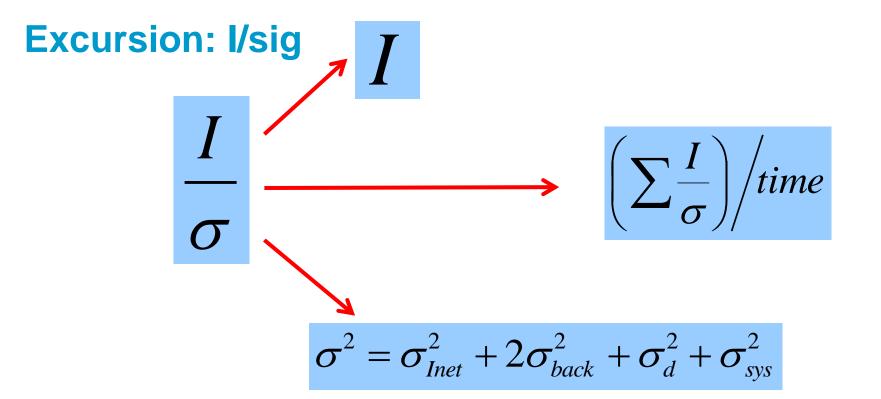
Screening

- Pre-experiment automatically exposure time scaled!
- Screens only look at low theta
- Rapid turn around to next sample

Typical Work-Flow



Pre-experiment


- Careful experiment planning = same theta range as final experiment: Mo = 0.8; Cu = 0.837
- Experiment scaling works well up to factor 20.
- What resolution should I use?
- Standard: defaults work well
- Absolute structure determination: The highest you can get!
- Connectivity only: 1.0 is fine

- X-ray diffraction experiment are governed by Poisson statistics: I; sig(I)=sqrt(I)
- Rule of thumb: Inverse of I/sig is your R1

- Influence I: Time, bigger xx, X-ray source (wl, power, efficiency), sample temperature, redundancy
- Influence sig: less background, sample = beam, correlation

Pre-experiment tab

Information on

- Unit cell
- Quality
- Diffraction limit

Pre-experiment

CELL (CSD: 15 +61L) orthorhombic P (32) 97.7%(127/130) 5.965(2) 9.051(4) 18.370(7) 89.97(3) 89.98(3) 89.97(3) V = 991.8(7) INTENSITY STATISTICS (FULLS) 0.80A N=336 min=0.80A max=3.86A I/sig=9.1 obs=65.8% I/sigo=13.3 time for I/sig=15.0= 13.5 MOSAICITY el=1.06, e2=1.19, e3=1.37 (deg) #partials used=104 DIFFRACTION LIMIT 0.89A (pre)								
🔽 Run strategy afte	er pre	START EXPERIMENT						
	0.800	Ang 💿 Res 🔿 Th 🔿 2Th						
	15.00							
Experiment type:	xperiment type: Use Laue symmetry							
Strategy type	Complete redundant data							
Redundancy	5.0	Comp. limit 100.0						

Strategy

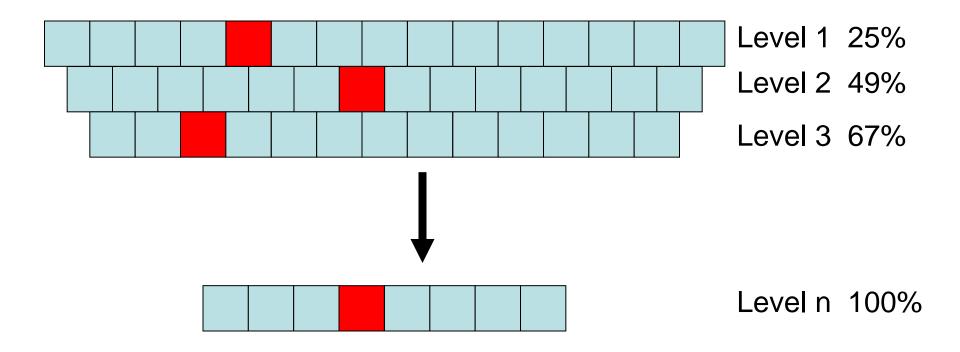
- Two basic approaches: 'Fixed strategy' vs.
 'Symmetry adapted strategy'
- 'Symmetry adapted strategy' requires sample knowledge:
- Unit cell and orientation
- Laue/point symmetry
- Diffraction power
- Sample mosaicity

Type of experiments

- Fastest possible
 - 'Complete data' (exploit symmetry)
 - Geometric objects (quadrant, hemisphere, full sphere)
- Charge density/absolute structure
 - Target redundancy
- Absorption correction
 - complete data + geometric objects
- Twin/multi crystal
 - Complete on all components

The strategy computation question

user constraints



distance, detector, collisions

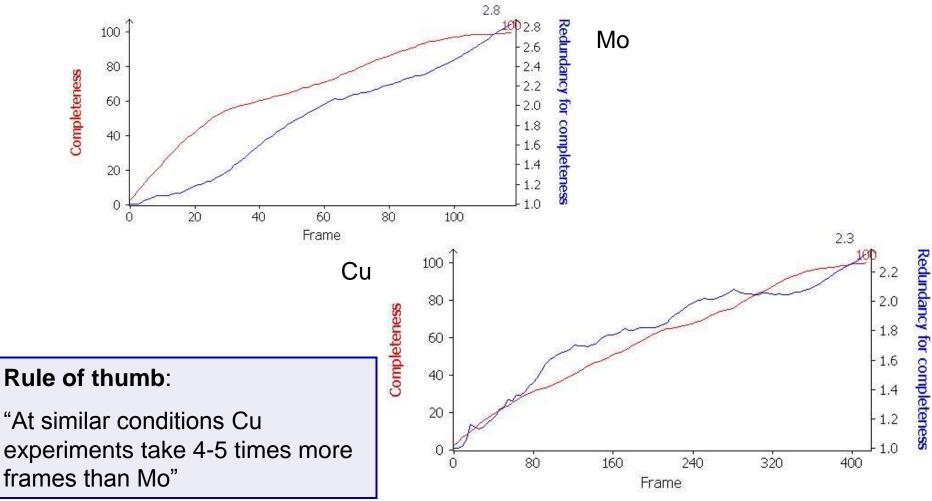
Pool of runs Typically 150-2000

The strategy computation question 2

What is efficient?

runs: 7, frames: 520 theta settings: 2; 25.31; 25.93, max resolution: 0.734

Laue: 2/m; Friedel off, Target 0.800Ang


Co	Completeness (under Laue symmetry)					Covera	.ge (unde:	r P1)				
:	Res		#Data	#Theory	90	Redundancy	#Total	#Data	#Theory	୫	Redundancy	y #Total
18	.50-	1.74	409	415	98.55%	2.7	1108	644	828	77.78%	1.7	1123
			415	415	100.00%	2.6	1084	637	828	76.938		1077
1	.37-	1.19	415	415	100.00%	2.3	942	593	828	71.628		946
1	.19-	1.09	415	415	100.00%	2.0	850	585	828	70.65%	5 1.4	845
1	.09-	1.01	415	415	100.00%	1.9	776	530	828	64.01%	1.5	775
1	.01-	0.95	415	415	100.00%	1.7	719	546	828	65.948	± 1.3	719
0	.95-	0.90	415	415	100.00%	1.6	680	522	828	63.04%	± 1.3	677
0	.90-	0.86	415	415	100.00%	1.5	623	500	828	60.398	1.2	624
0	.86-	0.83	415	415	100.00%	1.5	619	507	828	61.238	1.2	617
0	.83-	0.80	417	417	100.00%	1.4	576	496	830	59.76%	1.2	574
18	.50-	0.80	4146	4152	99.86%	1.9	7977	5560	8282	67.13१	5 1.4	7977

Rule of thumb:

"When requiring 100% completeness the minimum achievable redundancy is about 2"

The rotation method

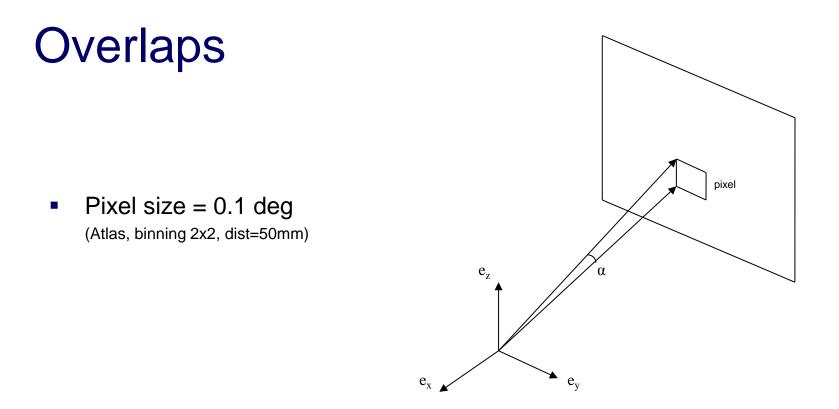
Detector size

Detector relative size	Unique speed	Observation speed
Eos 1	1	1
Atlas 2.4	1.3 – 1.6	1.6 – 1.8
Titan _{3,7}	1.4 – 1.8	2.0 – 2.2

Detector distance

Distance	Frames	Total time	Disk space
50 mm	167	1h 29m	180Mb
100 mm	378	3h 19m	400MB

Price: 2 x distance = 2 x frames


Sapphire, res =0.8, complete data

Rule of thumb:

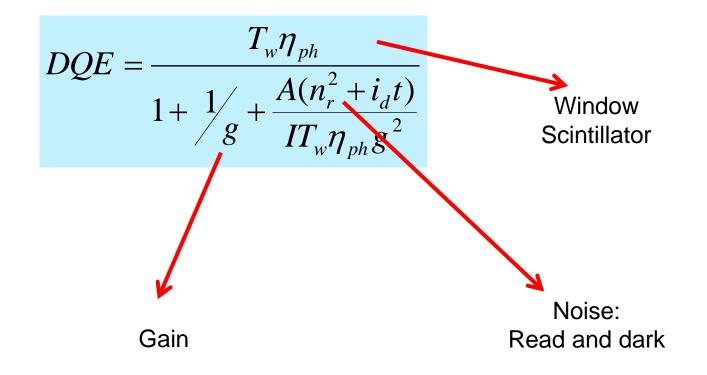
"Use as close distance as possible"

Rule of thumb:

"First fine slice then go back with detector"

HW – Detector technology: Key metrics

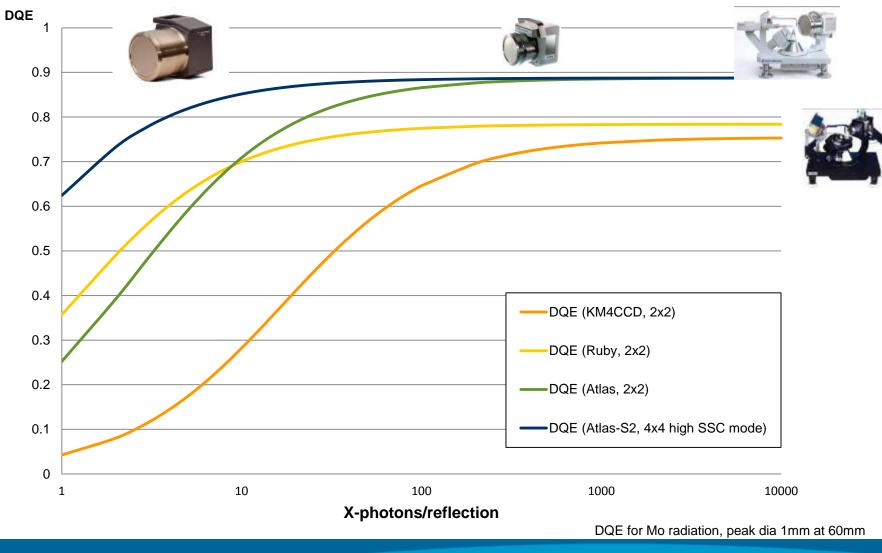
Eos S2


Atlas S2

Titan S2

- Detectivity
- Dynamic range
- Speed
- Size
- Price

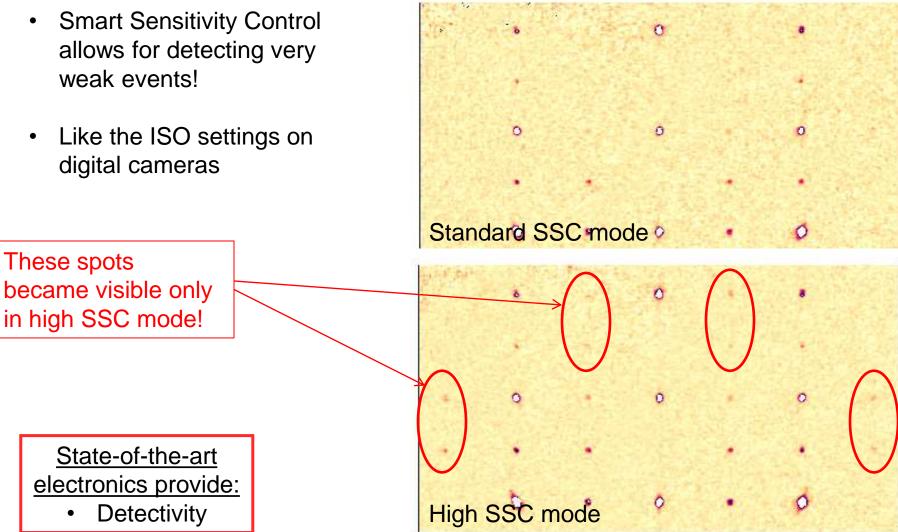
Detectivity: Detective Quantum Efficiency (DQE)



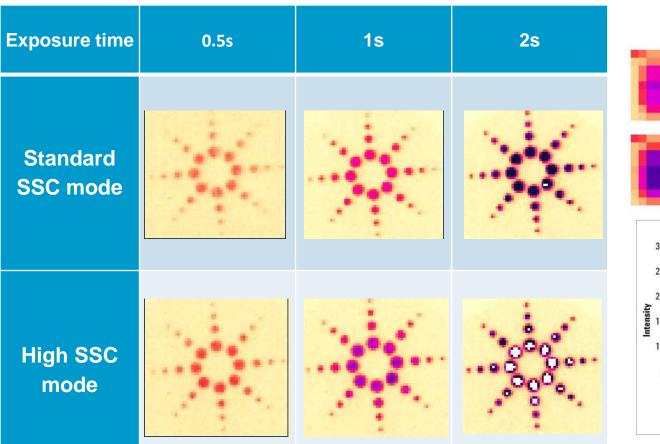
M. Stanton et al., J. Appl. Cryst. (1992). 25, 638-645

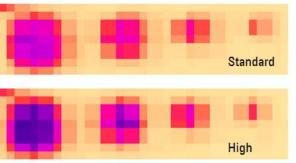
Detective Quantum Efficiency (DQE) advances

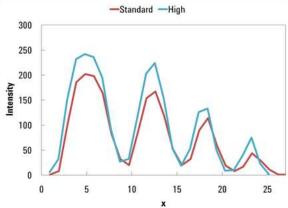
DQE versus intensity



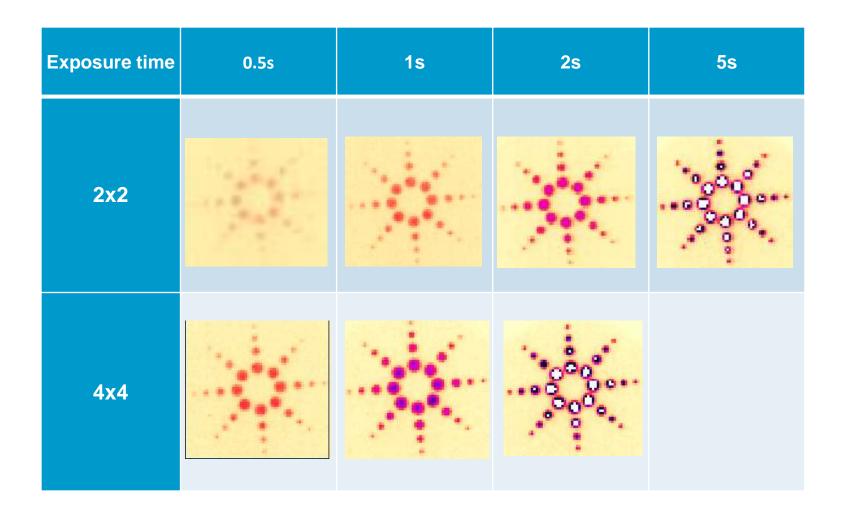
What is 'Smart sensitivity control' SSC

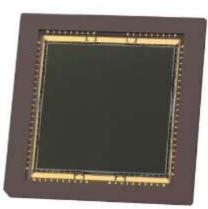

- Smart Sensitivity Control • allows for detecting very weak events!
- Like the ISO settings on ٠ digital cameras


Precession image (Fe formate, 0kl plane)



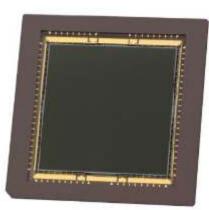
Titan S2 camera SSC functionality 4x4 binning




Titan S2 camera SSC functionality 2x2 vs. 4x4 binning

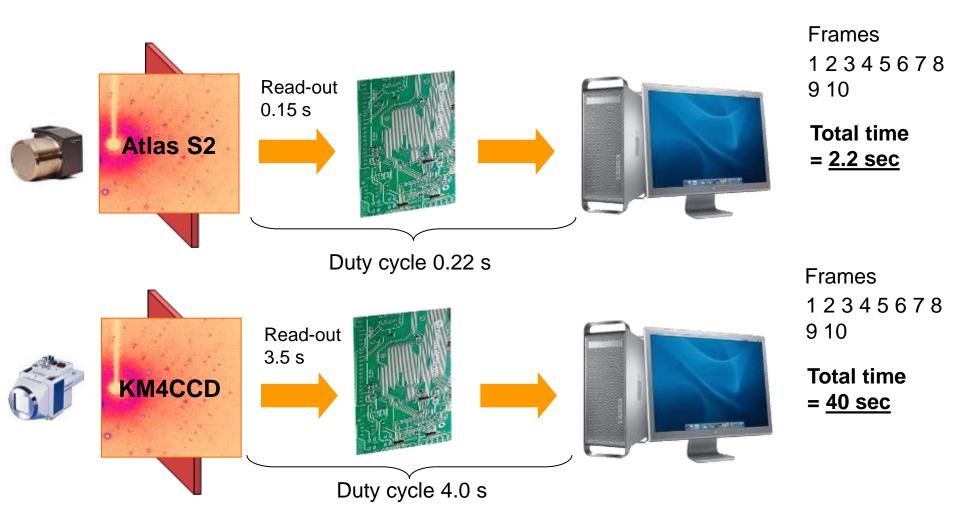
HW – Detector tech: Full well/Dynamic

Detector generation	Full well with respect to base binning pix (e ⁻)	Relative	-214
KM4CCD, Sapphire 2x2	256'000	1	ũ
Ruby 2x2	128'000	0.5	()
Atlas 2x2	550'000	2.1	
Atlas – S2 4x4	8'800'000	34.3	


State-of-the-art electronics provide:

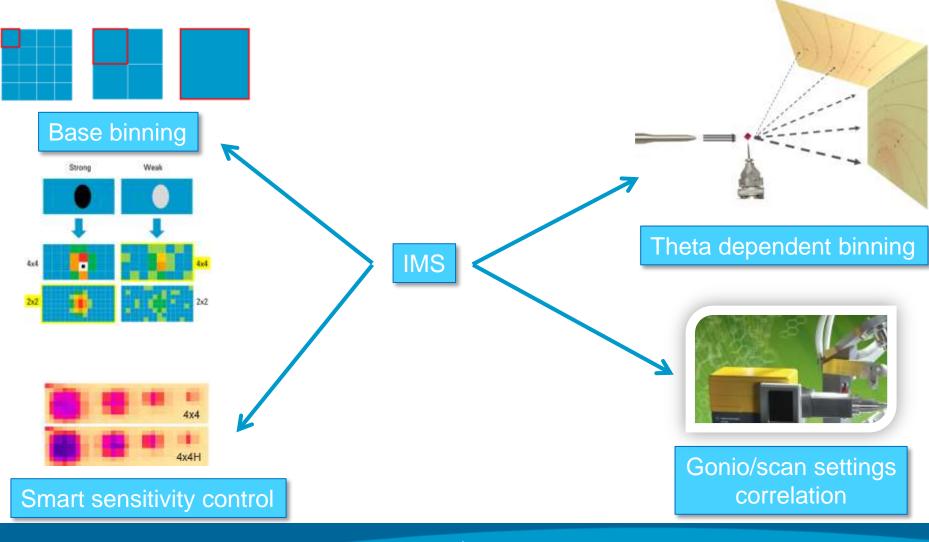
- Speed
- Instant binning switch
 - Full well

HW – Detector tech: Read-out times


Detector generation	Readout frequency for 1x1 binned image	Relative	
KM4CCD, Sapphire 1M	0.075Mhz	1	(
Ruby 4M	0.420Mhz	5.6	
Atlas 4M	2.100Mhz	28	
Atlas – S2 4M	4.400Mhz	56.7	

State-of-the-art electronics provide: • Speed

HW – Detector tech: Read-out times


HW – Sources

Same sample 0.3mm, normal tubes (2kW, 0.5mm collimator), micro-focus (50W), GV1000 (1000W)

	Source type	Integral intensity relative Enhance Mo
	Enhance Mo	1
	Enhance Cu	5
	Ultra Cu	40
	Nova Cu	120
	Nova Cu 2 nd gen	240
	GV1000	Up to 2400

Intelligent measurement system - IMS

How to increase data quality?

Extending exposure time

Increase absolute detectivityProduce more overloads

Increasing redundancy

Good for scalingGood for absorption correction

Rule of thumb:

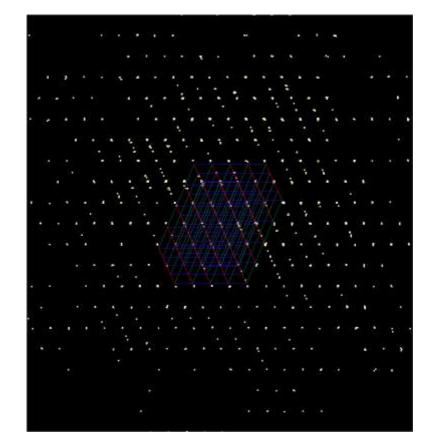
"Extend exposure time for weak crystal"

"Increase redundancy for good scaling and absorption correction"

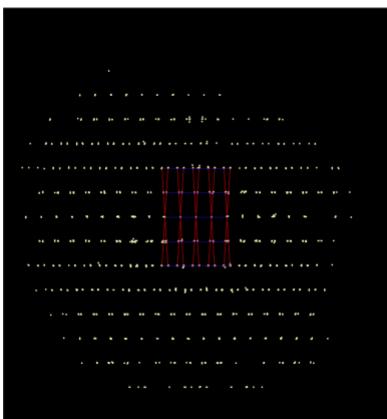
Twinning*: Challenges for the crystallographer

- Identify 'proper' unit cell(s); if possible at the screening/preexperiment stage
- Reduce overlapping data
- De-convolute and correct data
- Solve the structure
- Refine in best possible way

*non-merohedric

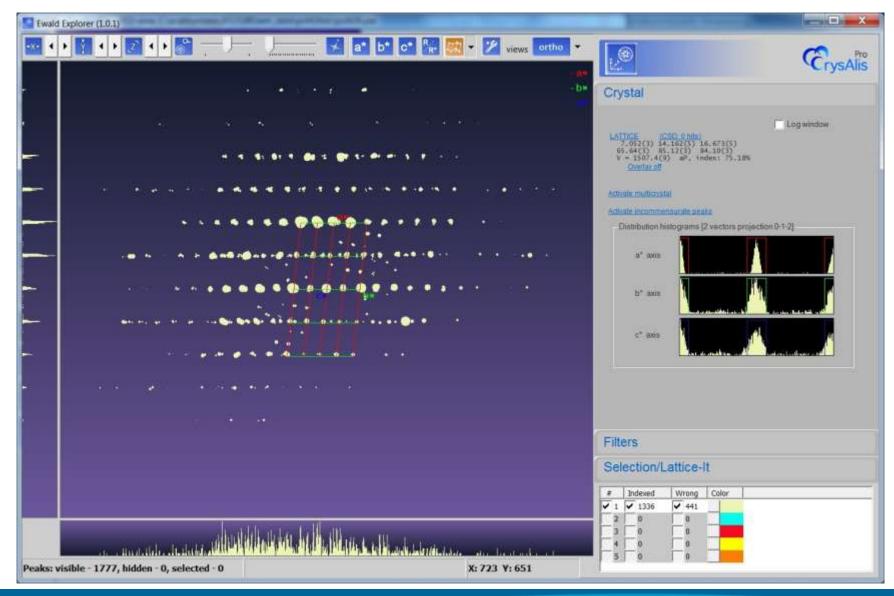


Screening tool for quickly judging sample quality


SM Screening	SM Screening
Screening	Screening
Mount Screening >	Mount Screening
PEAKS UB fit with 70 obs out of 70 (100.0%) JNIT CELL (CSD:14+437L) PG: mmm orthorhombic P 5.97(2) 9.05(2) 18.356(17) 90.02(13) 90.26(15) 90.2(2) V = 992(5) DUALITY Resolution(A) N I/sig I/sigo inf - 1.23 91 24.0 26.5 1.28 - 1.23(last) 10 10 12.9 Diff. limit: beyond 1.23 (theta res. limit) for t/sig=2.0 Mosaicity: e1=1.2, e2=1.2, e3=2.0 (deg), Iso= 1.49 (deg)	<pre>PEAKS UB fit with 98 obs out of 187 (52.4%) UNIT CELL (CSD: 0+0L) PG: -1 anorthic/triclinic P 10.841(9) 19.320(8) 20.107(19) 73.92(5) 83.35(7) 80.15(5) V = 3977(5) QUALITY Resolution(A) N I/sig I/sigo inf - 0.91 749 0.7 10.8 1.05- 0.91(1ast) 83 0.5 7.1 Weakly diffracting sample NOTE: Quality estimation may be unreliable - can: Increase image binning to 4x4 Increase exposure time Run pre-experiment with suggested exposure time - Change sample</pre>
Experiment - Complete data for publication	Experiment - Complete data for publication
Name: exp_209	Name: exp_101
Detector=52.0mm, Res. = 0.837Ang, l/sig.=15.0, width=1.0deg, Movie, cryo off, Strategy: Complete data (default mode), Exposure: 1.0s 4.0s	User=maja.user, Detector=43.0mm, Res. = 0.800Ang I/sig.=15.0, width=1.0deg, Movie, cryo off, Strategy: Complete data (default mode), Exposure: 60.0s
Exposure time: 1.0 s	Exposure time:60
Start Pre-Exp. (5 min)	Start Pre-Exp. (35 min)
Goniometer	Goniometer
Omega Theta Kappa Phi Distance 20.0 -35.0 0.0 0.0 52.0	Omeqa Theta Kappa Phi Distance 20.0 0.0 0.0 0.0 41.9
Generator kV mA	Generator

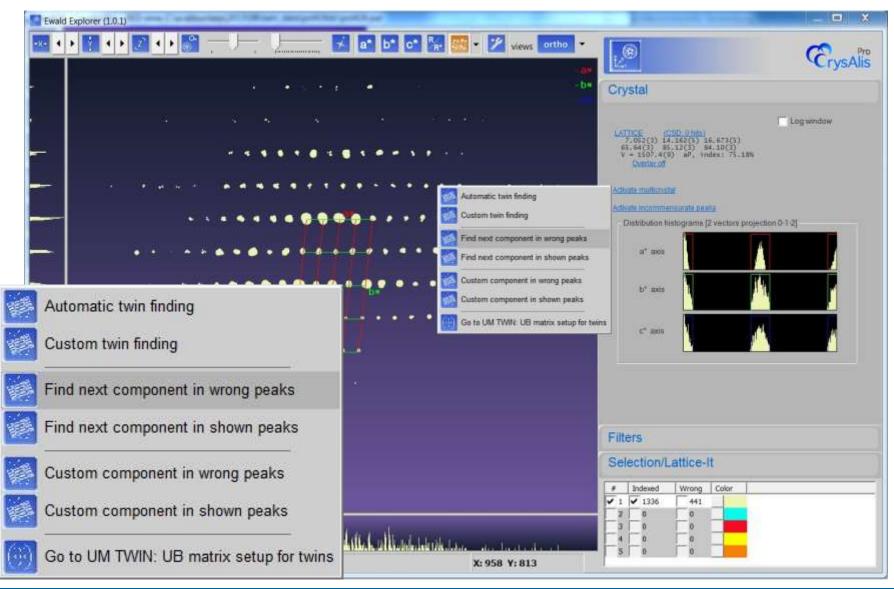
Twin types

Easy twin



Easy twin	Mu-calculator (1.0.3): Absorption coefficient in mm-1 Cell and wavelength 7.05249 14.16205 16.67339 65.642 85.120 84.103 1507.358 Mo-radiation Z 1.00
Lattice wizard	Chemical formula: (e.g. C11 H10 S 02) Numbers follow elements: separate elements by space:
Lithing Peak functing Unit or Converted off (CLD) - 0.16(2) Peak functing 0 0 0 0 Converted off (CLD) - 0.16(2) Peak functing 0 </th <th>Result 3 element(s): H+ 40.00(2.77); C= 80.00(65.83); F= 24.08(31.29); Formula wt 1457.20 Ma(mm-1): 0.14 Density: 1.605 z: 1.00 F(000): 840.00 At.vol: 10.47 Non-H at.vol: 14.49</th>	Result 3 element(s): H+ 40.00(2.77); C= 80.00(65.83); F= 24.08(31.29); Formula wt 1457.20 Ma(mm-1): 0.14 Density: 1.605 z: 1.00 F(000): 840.00 At.vol: 10.47 Non-H at.vol: 14.49
LATTICE Current cell (CSD: 0 hits) 7.052(3) 14.162(5) 16.673(5) 65.64(3) 85.12(3) 84.10(3) 1507.4(9) Lattice reduction selected cell 7.0511 14.1637 16.6515 65.6629 85.1010 84.1126 aP 31 reduced cell 7.0511 14.1637 16.6515 65.6629 85.1010 84.1126 1505.5 PEAK TABLE Peak hunting table UB fit with 1336 obs out of 1777 (total: 1777,skipped:0) (75.18%)	These styles of this discussed bismula, you may seen to semalize data semicord on a make all couput this this These styles of this discusse with semicord programs (his Oline). AutoOurn, WWOO) Bet real and formals

- Indexation <90%</p>
- Chemical content consistent

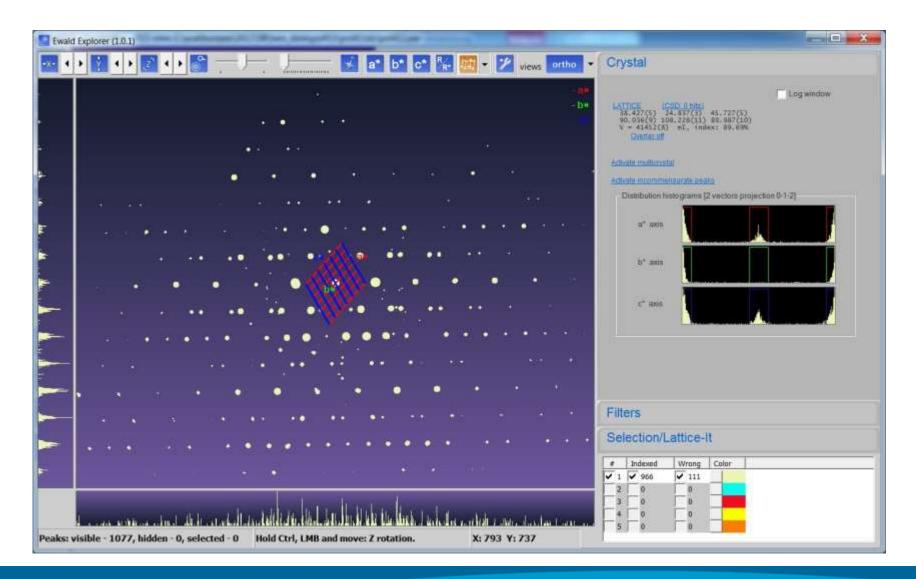

Agilent Technologies

Easy twin in new Ewald^{Pro}

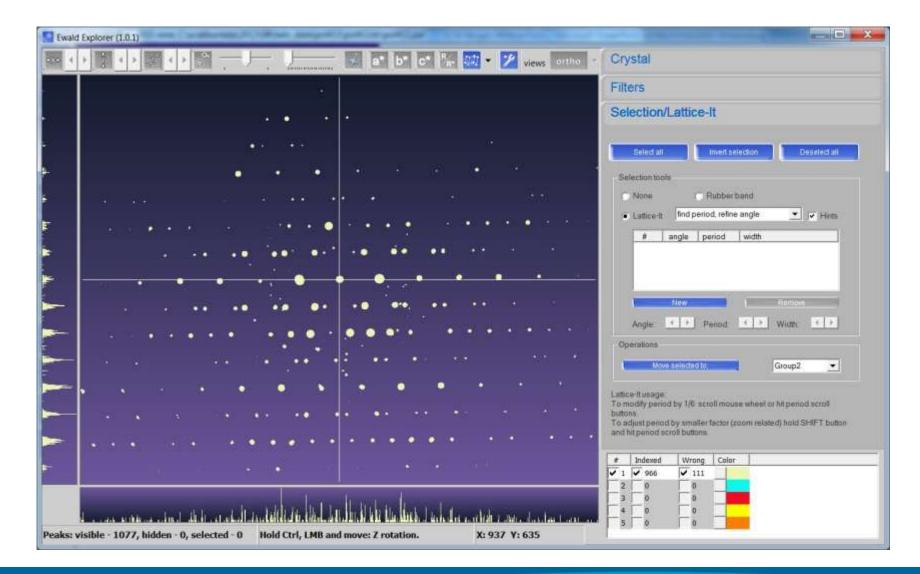
Easy twin in new Ewald^{Pro}

Easy twin in new Ewald^{Pro}

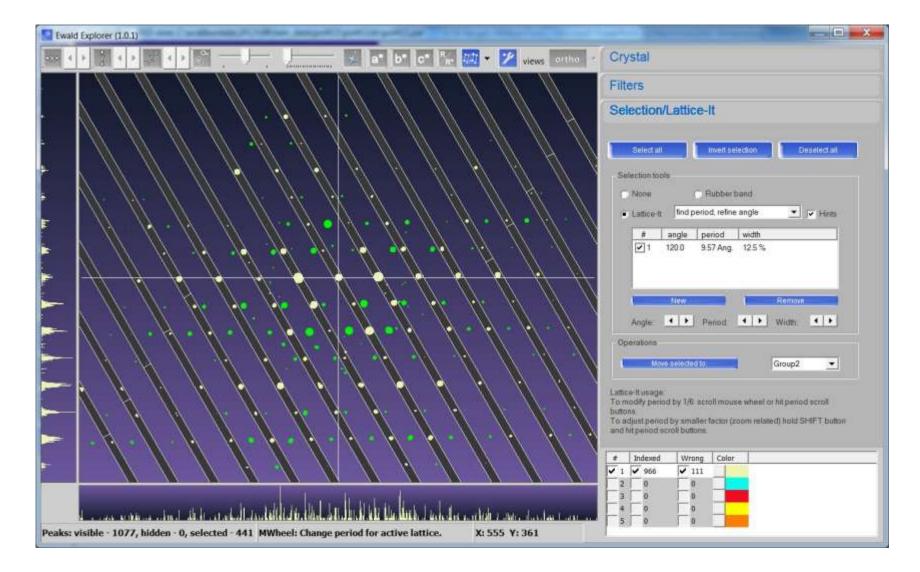
Ewald	d Explorer (1.0,1)		Course of Long Street, or other	
-x- 4	• 🚺 • • 🖾 • • 🚰	ortho		Pro Pro
		omponent#1 omponent#2		CrysAlls
			Crystal	
ŧ	1422 - 42 - 42 - 44 - 45 - 45 - 45 - 45 -		Camponent#1 (CSD 0.hts)	C (Log window
-	n status sta		Component #1 (CER 9 reta) 7.0534 14.1620 16.6693 ap 75.97% 85.649 85.141 84.128 1309.2 Overlay off (provid 1 cells)	
-	· · · · · · · · · · · · · · · · · · ·	* *	Constant Al (2000) (1960) 7.0538 34.1451 36.6547 aP 28.36% 65.728 54.838 83.806 1304.3 Dvariat of forous 2 color)	
-			Add next consonent	
	I AAAAT	2011	Deach-ate multicratal	
1000		2.18	Rot(UB1,UB2)=179.8058 deg around 0.96 0.20 0.20 (rec) 1.00 0.00 0.00 ((dir)
-				
	- 77 A 77 A A			-
-	••••••••••••••••••••••••••••••••••••••			
-				
•	LATTICE			
	Current cell (C 7.05354 (0.		.16245 (0.00515) 16.6902	20 (0.00507)
		0.03203) 85	5.12518 (0.02852) 84.114	57 (0.03119)
	Lattice reduction			
		4.1637 16.6	515 65.6629 85.1010 84	.1126 aP 31
	reduced cell	4.1637 16.6	515 65.6629 85.1010 84	.1126 1505.5
	Twin information	1		11120 100010
	2: 7.0538 14.14	51 16.6567 6	55.649 85.141 84.128 1509.2 55.728 84.838 83.808 1504.3	
			arate: 1138(64.0%) Overlapp rate: 279(15.7%) Overlappe	
Peaks:	visible - 1777, hidden - 0, selected - 0 Find next unit cell Unindexed: 147		cherry orenoppe	

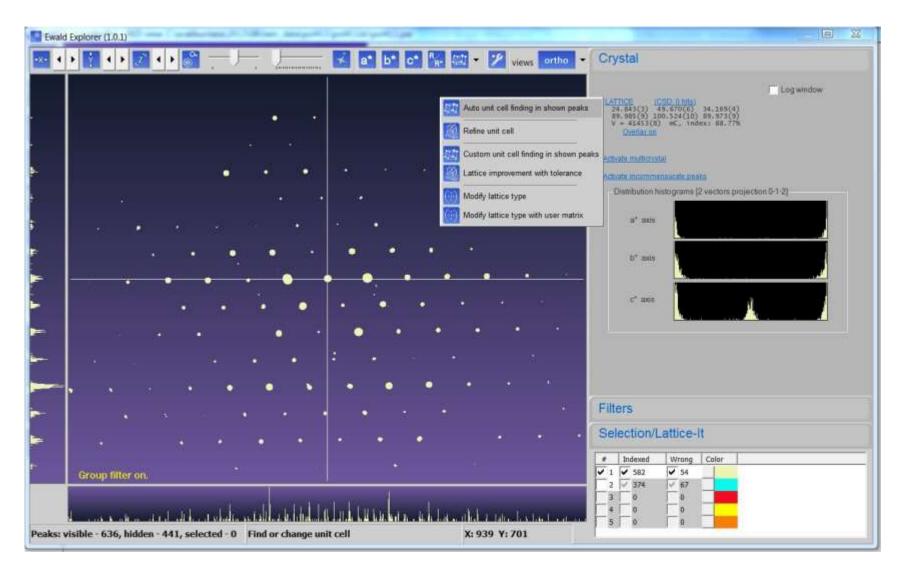

-	Cell and wavelengin
Lattice withand (1.0.32)	38.42671 24.83705 45.72677 90.036 108.228 89.987 41451.873 Mo-radiation
Lattice wizard	Z: 134
LATICE Current cell (CS0: 0 hits) 38.427(5) 24.837(3) 45.727(5) 90.036(9) 108.228(11) 89.987(10) 41452(8) Constraised current cell 38.425(5) 24.83(4) 45.733(6) 90.0 108.251(14) 90.0 41452(10) Lattice reduction selected cell 38.4282 24.8376 45.7274 90.0349 108.2283 89.9887 ml 27 reduced cell	Chemical formula: (e.g. C11 H10 S O2) Numbers follow elements; separate elements by space; C14 H12 N3
24.8376 27.7682 36.3394 72.2609 70.0465 63.4572 20727.5 PEAK TABLE Peak hunting table UB fit with 966 obs out of 1077 (total:1077,skipped:0) (89.69%) WSTAUMENT MODEL Genomenter beam: 0.06784 appha: 50.04288 beta: -0.01668 om zero: -0.82838 th zero: 0.09567 ka zero: -0.90939 Detector x+rot: 0.41740 y+rot: -0.07486 x=con: 531.79221 y-con: 50.32639 distance: 60.13336 Wavelength Mo (Ang): A1 0.70930 A2 0.71359 B1 0.63229	Result 3 element(s): H= 12.00(5.45): C= 14.00(75.64): N= 3.00(18.91); Formula wt: 222.29 Mu(mm-1): 0.07 Density: 1.193 Z: 134.00 F(000): 17956.00 At.vol 10.67 Non-H at.vol 18.20
LATTICE Current cell (CSD: 0 hits) 38.427(5) 24.837(3) 45.727(5) 90.036(9) 108.228(11) 89.987(10) 41452(8) Constrained current cell 38.425(5) 24.838(4) 45.733(6) 90.0 108.251(14) 90.0 41452(10) Lattice reduction selected cell 38.4282 24.8376 45.7274 90.0349 108.2283 89.9887 mI 27 reduced cell 24.8376 27.7682 36.3394 72.2609 70.0465 63.4572 20727.5	mu (mm-1) 0.07370 Edit mu Note: If you change the chemical formula, you may need to refinalize data reduction to make all output files (like ins. crit. p4p etc.) consistent for use with external programs (like Olex2. AutoChem, WinGX) Set mu and formula
PEAK TABLE Peak hunting table UB fit with 966 obs out of 1077 (total:1077,skipped:0) (89.69%)	Log window

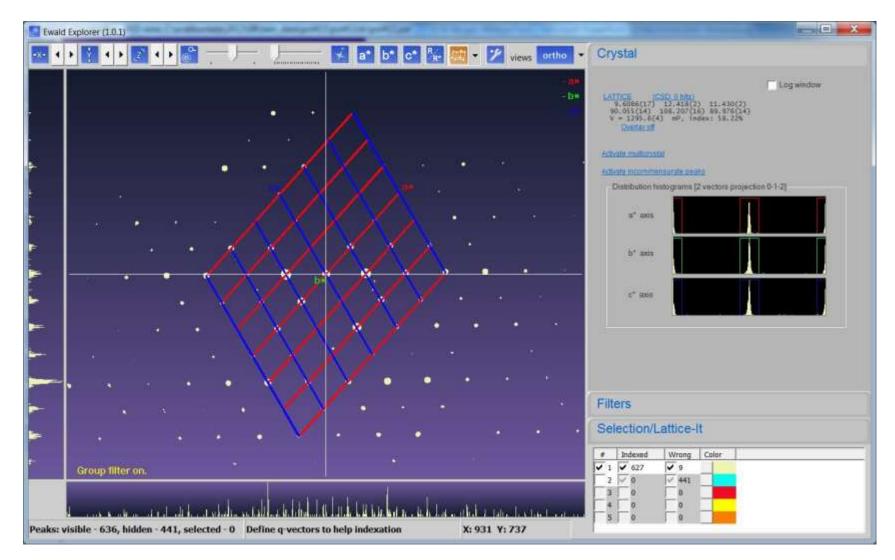
- Indexation good/high
- Chemical content inconsistent (here Z=134)



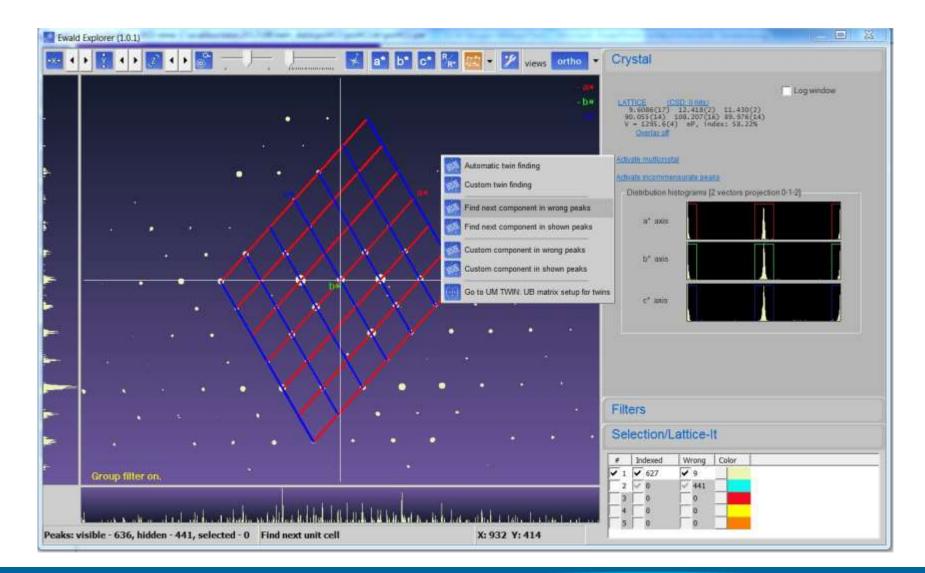
Mu-calculator (1.0.3): Absorption coefficient in mm-1

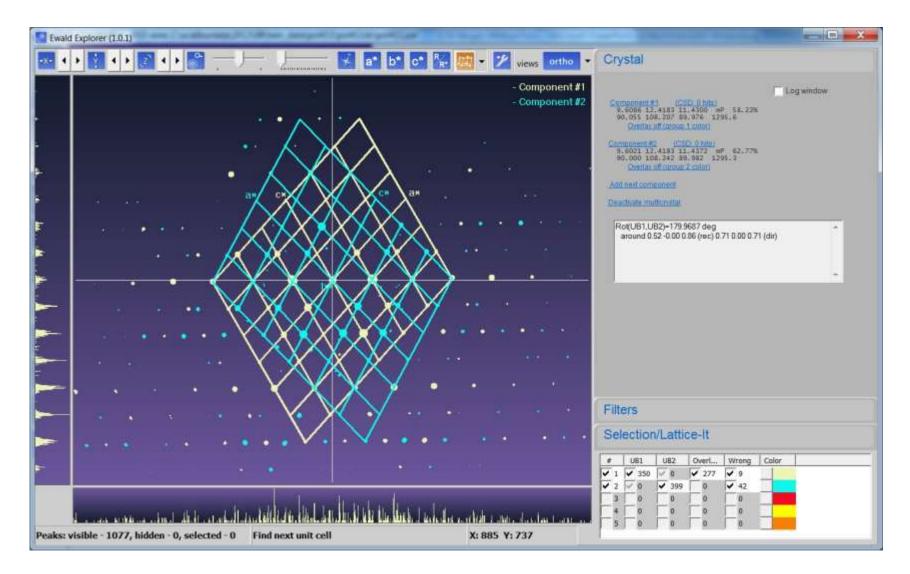

Super lattice faker in new Ewald^{Pro}

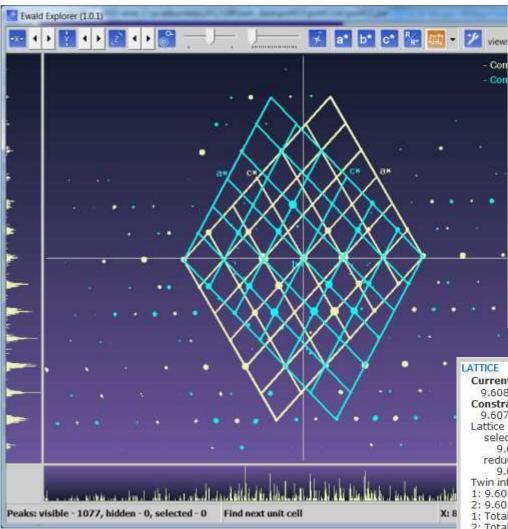




Ewald	f Explorer (1.0.1)	
-x- 4	• • • • • • • • • • • • • • • • • • •	Crystal
		Filters
		Selection/Lattice-It
20	••• •••	Select all invertiselection Deselect all
4	• • • • • • • • •	Selection tools
	a da a da a da a da da da da da da da da	 None Rubberband
F	<pre></pre>	C Latice-it Ind period, reline angle
		# angle period width
		Miner Flattons
		Angle () Period () Width
		Operations
		Move selected to Group2
-		
-		
-		
M.		# Indexed Wrong Color ✓ 1 ✓ S89 ✓ 47 ✓ 2 ✓ 377 ✓ 64
	a sea a s	2 2 3777 2 64 3 0 0 0 4 0 0 0 5 0 0 0
Peaks: v	visible - 1077, hidden - 0, selected - 0 441 selected peaks moved from group 1 to group X: 939 Y: 426	





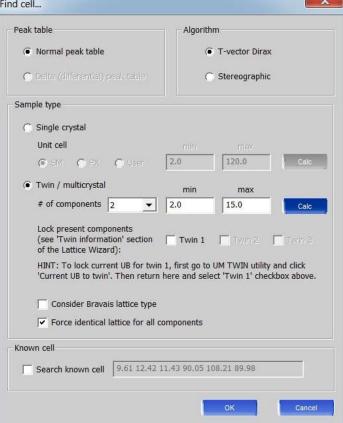


Lattice reduction

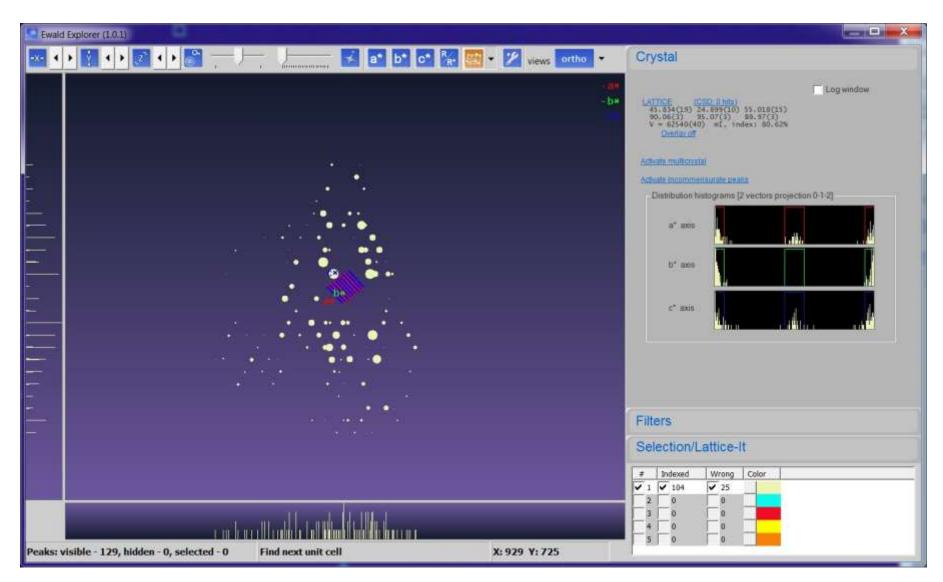
selected cell 9.6086 12.4183 11.4300 90.0545 108.2065 89.9764 mP 34 reduced cell

9.6086 11.4300 12.4183 89.9455 89.9764 71.7935 1295.6 Twin information

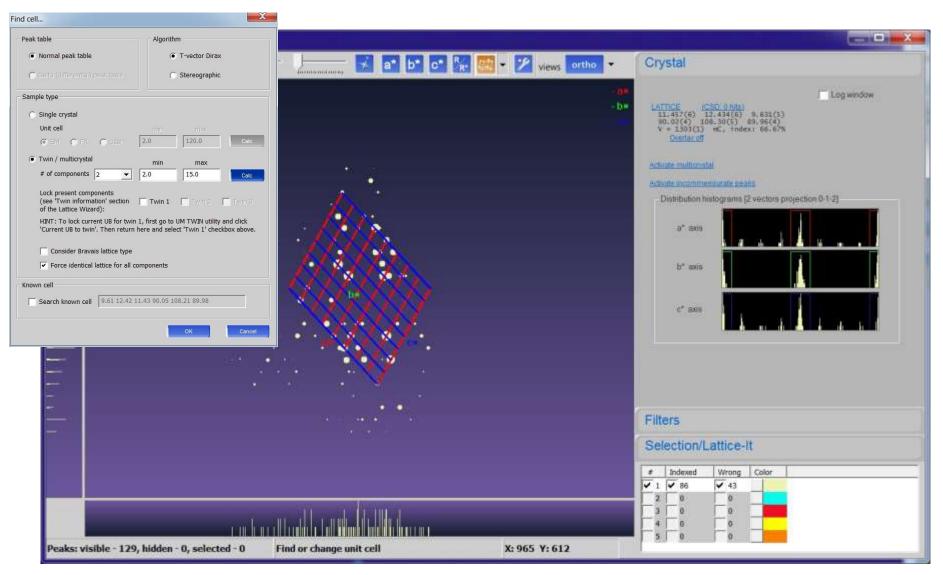
- 1: 9.6086 12.4183 11.4300 90.055 108.207 89.976 1295.6
- 2: 9.6021 12.4183 11.4372 90.000 108.242 89.982 1295.3


1: Total: 627(58.2%) Separate: 350(32.5%) Overlapped: 277(25.7%) 2: Total: 676(62.8%) Separate: 399(37.0%) Overlapped: 277(25.7%) Unindexed: 51(4.7%)

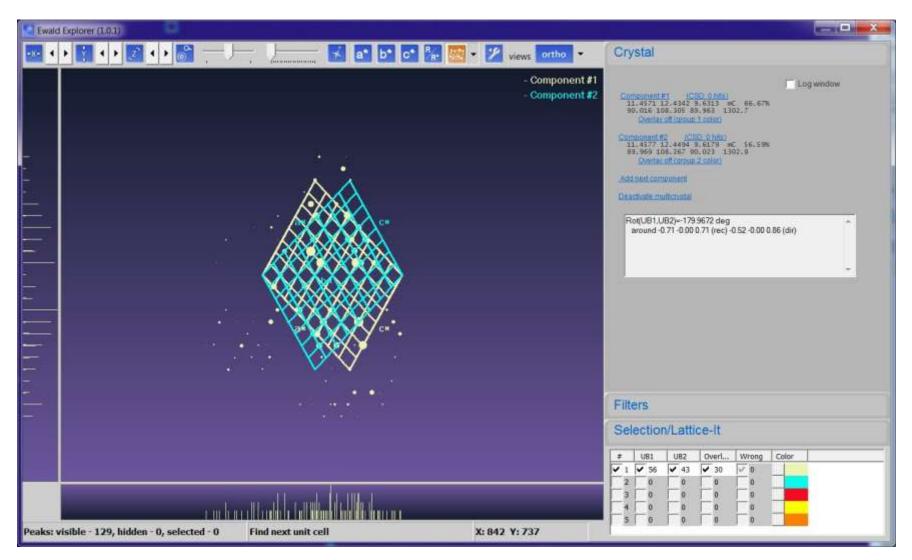
Other tools in Ewald^{Pro} to support twin handling


- Reflection grouping (up to 20 groups)
- Filters (intensity, d-value, runs [mistake a moving sample as twin])
- Custom unit cell finding

Please enter your expected che	ernical formula:	ine or a
C14 H12 N3		
3 element(s):H= 12; C= 14; N	= 3;	
Expected Laue symmetry:	Monoclinic	•
Expected Bravais lattices:	P •	
Expected lattice anisotropy:	2:1	•
Multiply by		
€ 0,5	(i) 1,0	2,0
Estimated volume: min= 612.0	0; max=1224.00	
Estimated max of max edge		



Judging a twin from few reflections can be tricky...

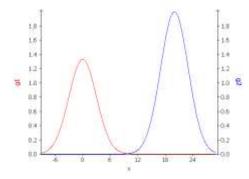


Use the custom unit cell tool...

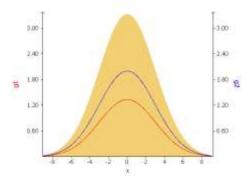
Find the twin from the wrong peaks...

Strategy with known twin law

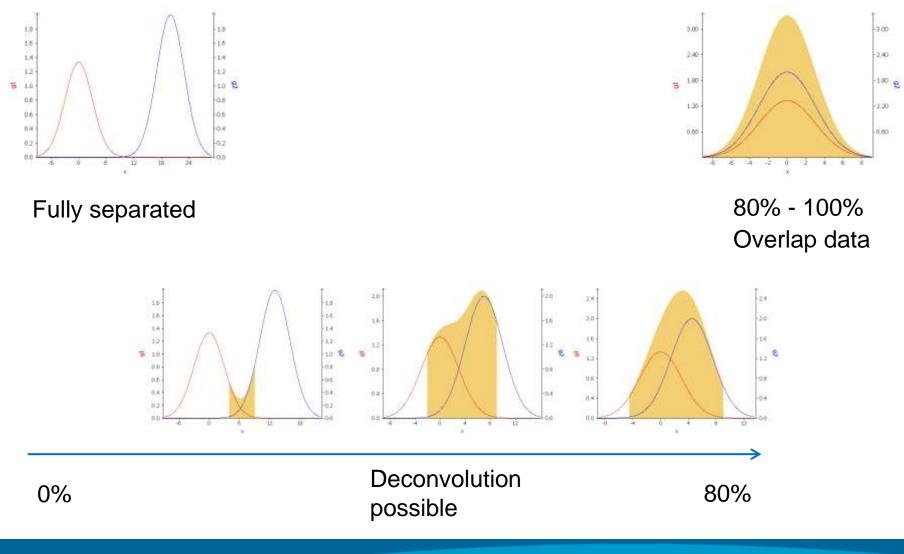
	Experiment Strategy (1.1.8)			X
	Experiment Strategy			CrysAlis
	Unit cell for Strategy Colculation (CSD: 0.145) Cells 11.430(2) 12.418(2) 9.6086(17) 90.824(14) 108.207(16) 89.945(14) 1295.6(4)	mC C-lettice	 \$8.22% (627 of 1677 reflection 	N2 Lettor Willard
	Strategy parameters Resolution Thete Thete 0.800 Laws group T Other 2/m (b-unique) Friedel mates are equivalent (uncheck for high quality absolute configuration data) Detector Distance 10.14 Strategy mode Complete data for twees		for all theta positions for each theta positions	default Inne: 18.00
Strategy mode Complete data for twins	x 99.74 %	Settings/Options Data to Mithel Sec	CCD processing	AutochendlycerGystBat
limit 100.0 UCr limit Max 99	0.74 % Calculate New Strat Calculate New Strat Completeness/Coverage tables		Marinally Edd Row Link	
for all twin components	pieteness in 2/m (b-unique)	100	Full sphere (P1)	र्श्व
	90		10700 10700 1	1.8 Redundancy for coverage 1.4 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	Frame		Frame	restruction Caroon



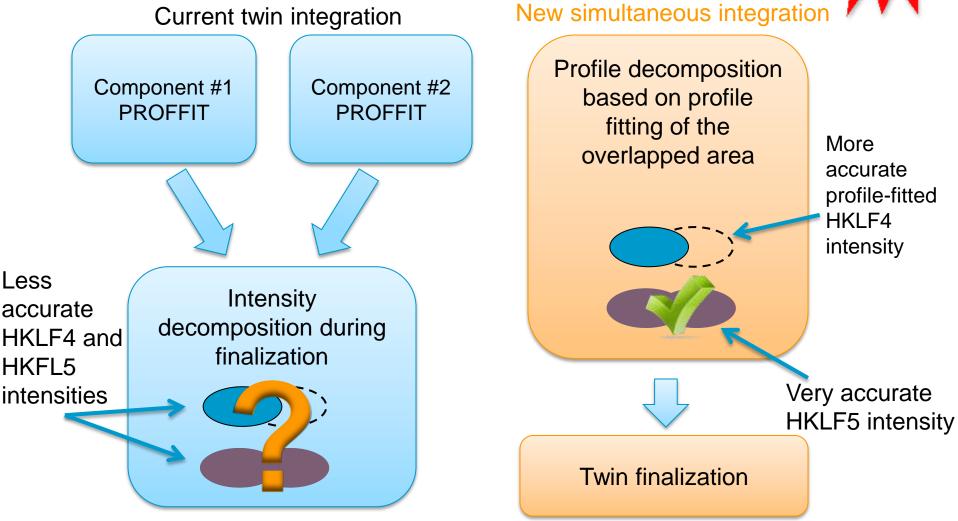
Data reduction

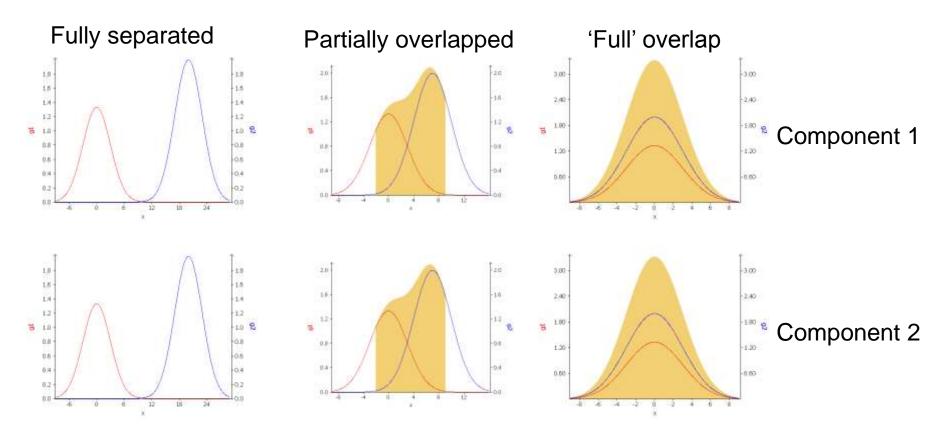

CrysAlisPro: Data reduction (1.13)	Proffit: CrysAlisPro data reduction assistant (1.0.26)
Load new experiment	Simultaneous twin data reduction
Full auto analysis (cell, red)	Step 1: Orientation matrix for data reduction
Data reduction with options CrysAlis	UB - matrix: -0.023887 0.014294 0.057126 (0.000009 0.000010 0.000011) -0.038447 -0.045998 -0.015443 (0.000010 0.000011 0.000011) 0.046928 -0.030486 0.050268 (0.000009 0.000010 0.000011) 11.45724 (0.00186) 12.44279 (0.00203) 9.62081 (0.00158) 89.94327 (0.01328) 108.28312 (0.01460) 89.96511 (0.01317) V = 1302.30 Selected cell (from UM rr/UM ttt/UM f): 14 11.4572 12.4428 9.6208 89.9433 108.2831 89.9651 mC Auto analyse found P-lattice in peak hunting data! Twin 1: 11.45724 12.44279 9.62081 89.9433 108.2831 89.9651 1302.30 Twin 2: 11.45006 12.44351 9.62704 90.0025 108.2504 90.1021 1302.65
	Lattice extinctions (filter Bravais lattice extinctions)
	Don't use filter (P-lattice) O Normal data reduction (HKL)
	C Other (reduction list) Generate Load
	Twinning/Multi crystal (activated by UM TWIN entries)
	Use automatic twin/multi crystal data reduction with the following components:
	🔽 Component 1 🔽 Component 2 🔲 Component 3 🔲 Component 4
	< <u>Zurück</u> <u>W</u> eiter > Fertig stellen Abbrechen Hilfe

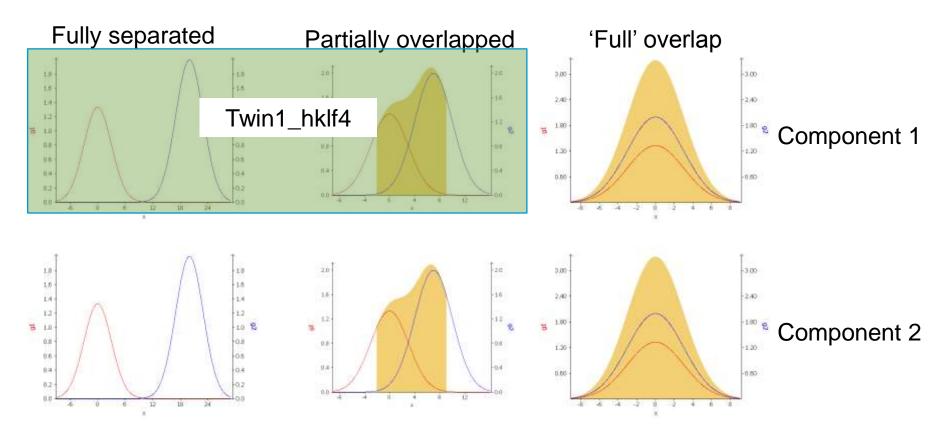
Twin profile data


Fully separated

80% - 100% Overlap data


Twin profile data


Current vs. new approach


HKLF4 and HKLF5 play modes

Component n

HKLF4 and HKLF5 play modes: 1st trial

Component n

Structure solve and refine using AutoChem^{2.0}

Olex2 Ele yew Structure Mode Tools Edit Model Select Help

ania1 C28H32CUHON12Sa ar-9.3573(0); b-25.0701(0);; c-14.7153(0)A a=90" (= 100.663(37" y=90" Mean Mr 23.8 Work Autochem2 Report / Buttle Drig / Take Only / Busin Drig / SEOP / Gut USER PHE. Salubon Program Refinement Plogram Auto: SOLUTION STAGE -> Shall D. Patlamon Mathind (0.64 v) VOD = 77, VATA = 30 REFINEMENT STAGE -+ Kention () R1 - 31.331, ATA = 14 --- Lotation 1 R1 + 8.45%, ATA = 27 -- Letation 2 BT - 7, 15 1, ATA - EU -> toration 3 Bt = 5.41 ATA = 52 -> hatalian 4 RT = 6.33% ATA = 53 Continue7 mmil(0 0) + mil(4 1)*3 + mm23 82*0 ---- 10.2 (5 2) **** SECONDARY REFINEMENT STAGE Asiaopopic Senalble? Rt = 1.011, 0.95 VES -> Relation if RI = 4.31%; STA = 55 -> Resistory I2 R1 = 4.50%; ATA = 100 -> heation fi fit = 4.01%; POLISHING STRUCTURE --- Keratam FI RS - 4.8176 Finished with ATA - 59 and 81 - 1.01 - ' (21.2 st RI = 0.0459 for 6358 unique reflections after merging for Fouri-Highest peak 2.75 at 0.4141 0.1483 0.7021 [0.98 A from F Deepest holo -1.33 at 0.3676 0.0921 0.7434 [0.80 h from [1] ******** finished at 15:59:41 Total CPU time: + anial 2. DOCS * 22,33 8.65 7.15 5.61 6.33 4.04 4.51 4.5 4.01 4.01 Refinement CTF file has been merged with the meta-data wif file -

_ 5 ×

0

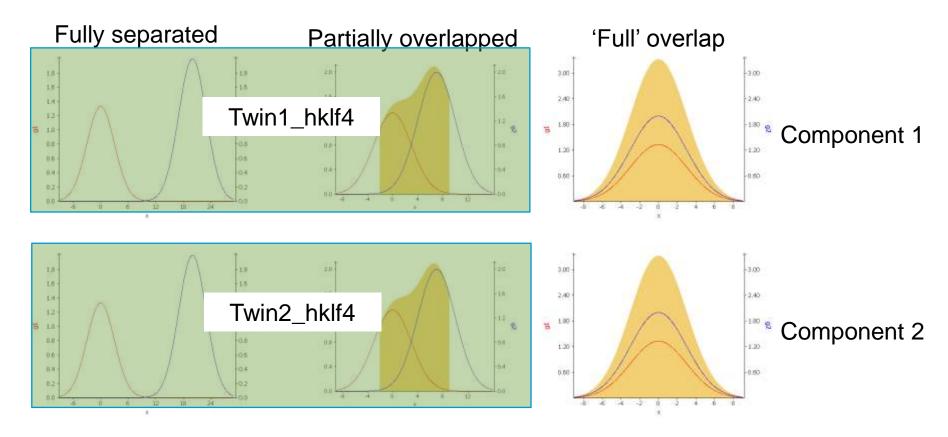
.

٠

4.019

11.06.81%

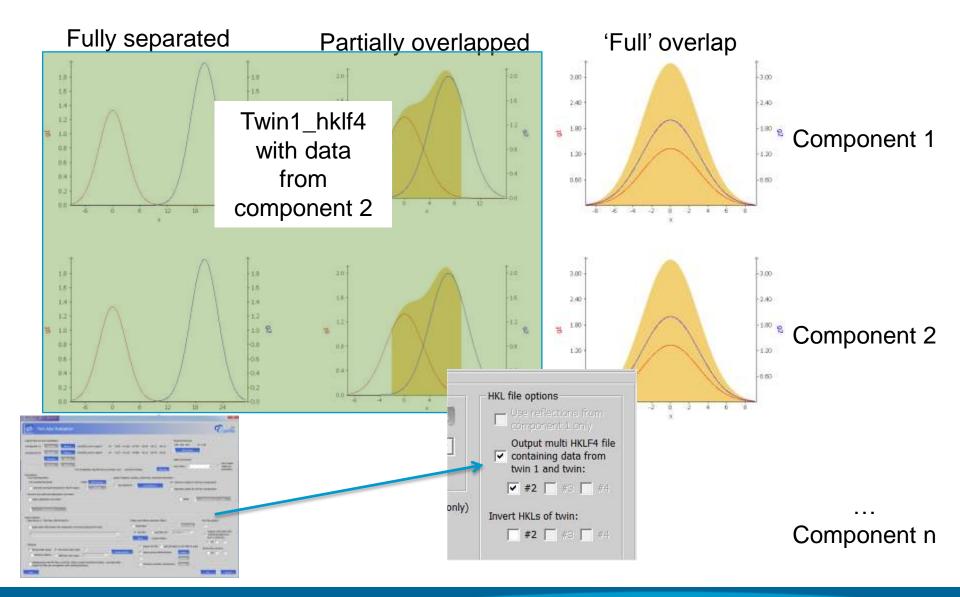
Infa


0 3

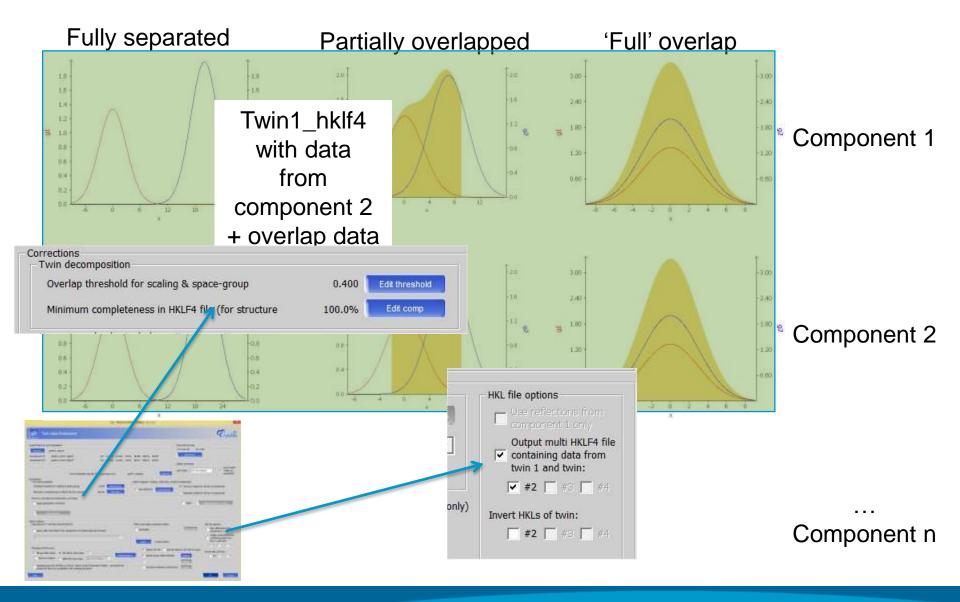
Bolution Mittad · Auto

Reforment Method + Auto

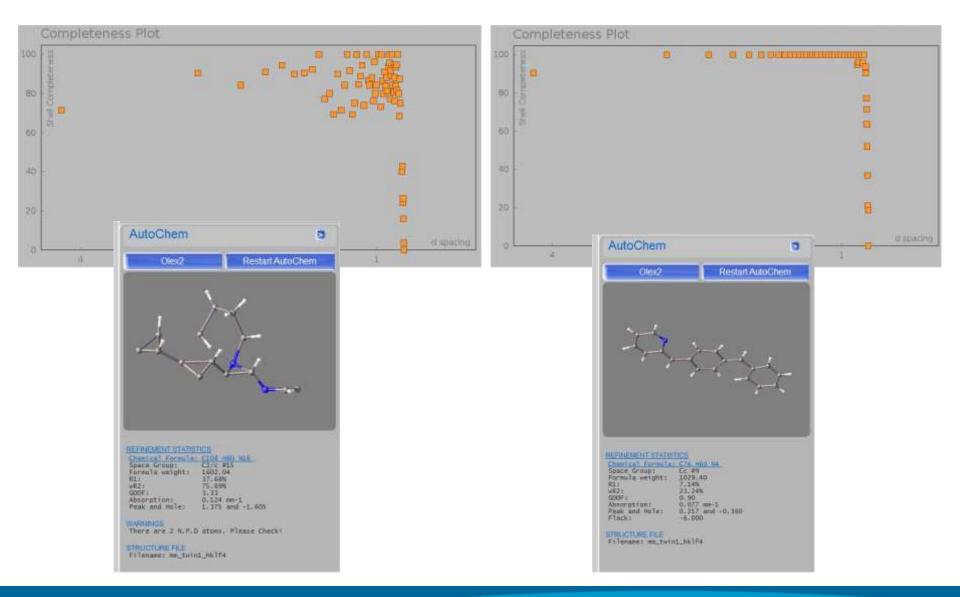
View


Get extra data in to solve the structure...

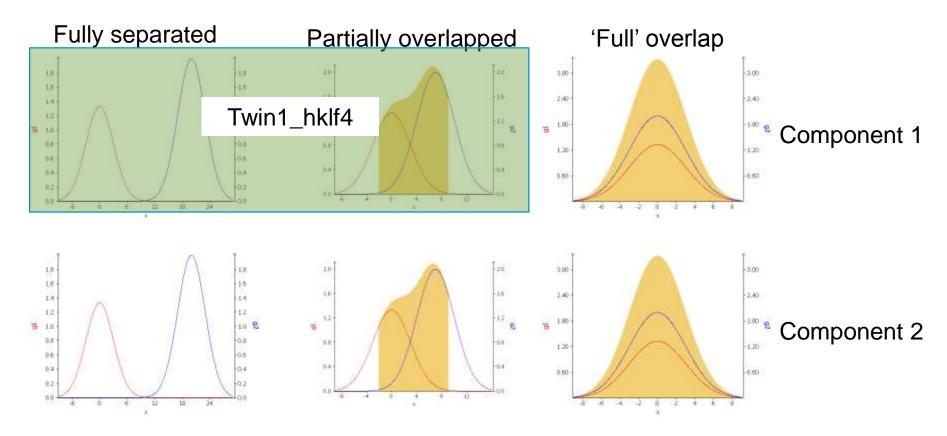
Component n



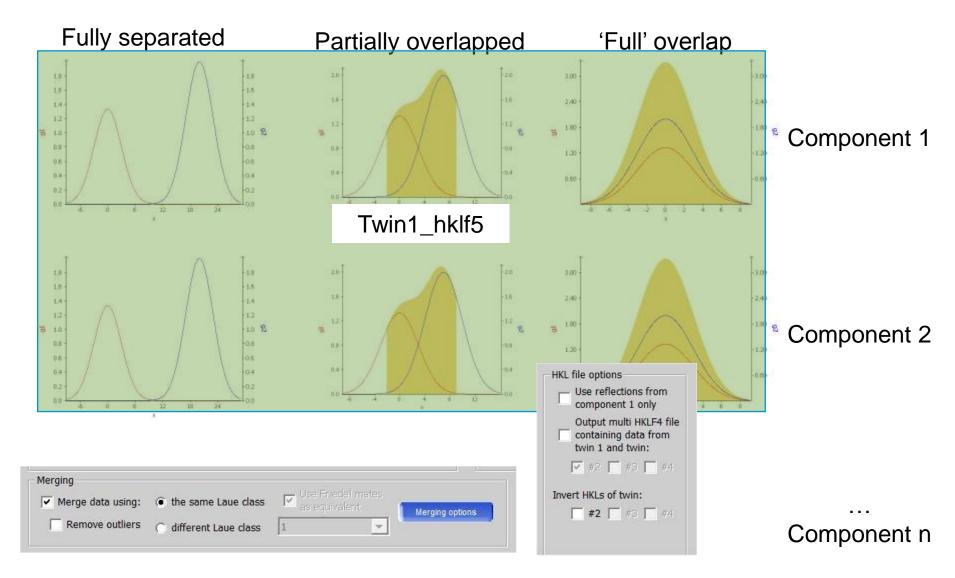
Get extra data in to solve the structure...



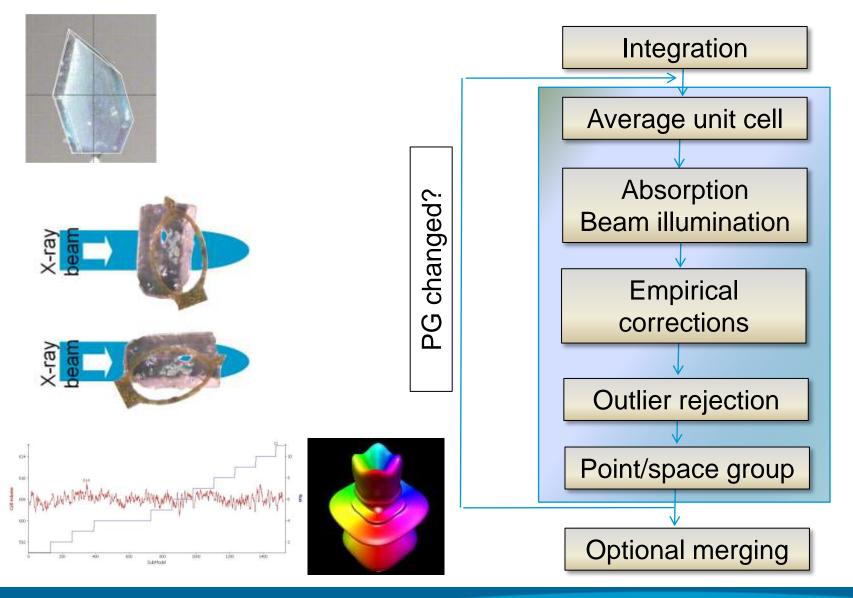
Not enough yet: Add full overlap data...



Why?

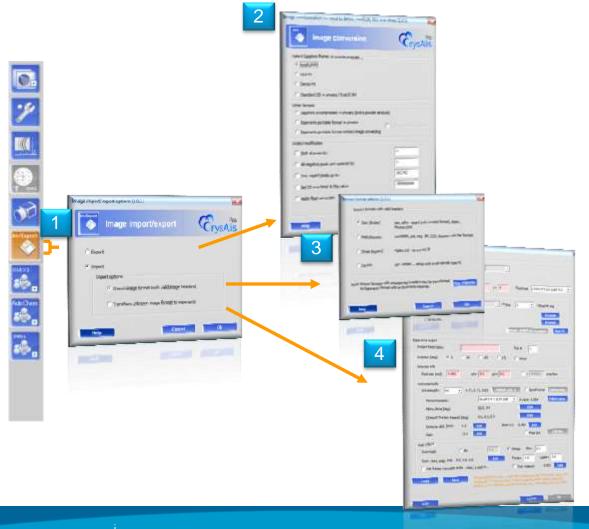

Solve done: Refine on good hklf4

Component n

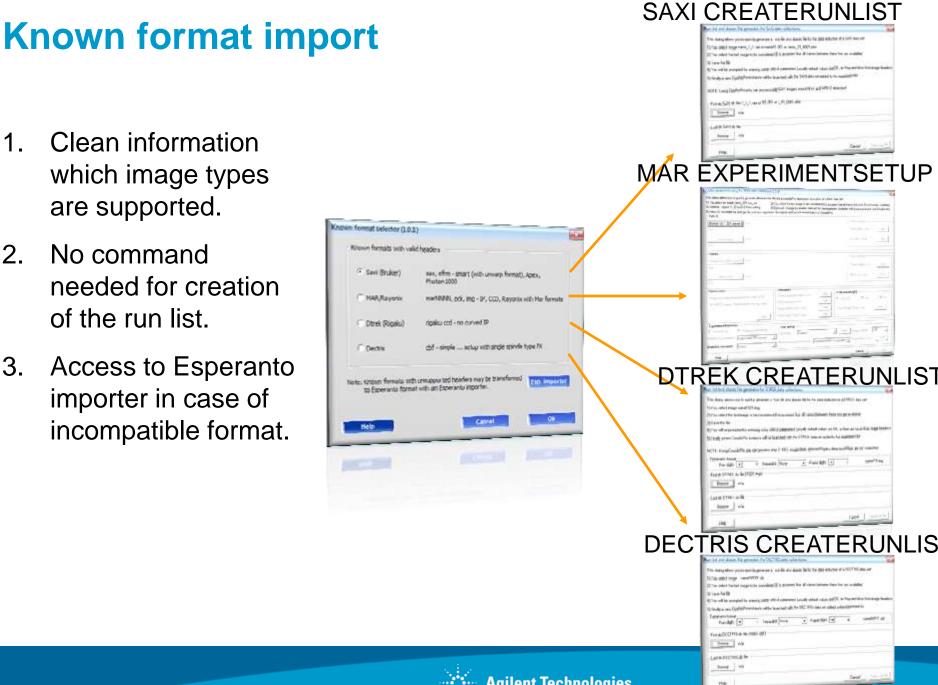


Solve done: Refine on good hklf5

Good data quality through full post corrections


Summary - twin

- Twins can be recognized early on during screeing/pre-experiment
- With the graphic and computational tools in Ewald^{Pro} twin assignment is easy.
- De-convolution of overlap data gives good HKLF4 files.
- Sometimes solution boot-strapping requires different play modes
- HKLF4 and 5 files can be easily conditioned for top data quality with absorption, beam illumination and empirical corrections.



Import/export from/to external formats

- Easier access to import/export options (on power toolbar).
- 2. Organized export options.
- 3. Importing external images on one clique (instead of typing commands).
- 4. Esperanto importer for non standard image types.

153

1.

2.

3.

Import/export

Dc rit/mar experimentsetup/dtrek createrunlist etc

Jacob and a state of the state	Bulk	Rename Utility							
ile Actions Options Help									
由 01 不	Name New Nam	e Sub Dir.	Type	Size	Crea.	Mod.	Act.	Len. Tak	A /
iii 🔔 02	alua5_038 img alua5_03	limg	038-	32	26.0	18.0	26.0	14	A
田 1. 四	alisa5_039 img alisa5_03	lumg	039	32	26.0	18.0	26.0	14	A
田 1. 04	alisa5_040 img alisa5_040	limg	040	32	26.0.	18.0	26.0	-14	д
8-1.05	alisa5_041 img alisa5_041		041	32	26.0.	180	26.0	14	AA
B alsa	alisa5_042.img alisa5_042		042	32	26.0	18.0_	26.0	14	
exp_255	alisa5_043 img slisa5_04		043-	32	26.0	18.0	26.0	-14	A
(1) map_200	alisa5_044 img alisa5_044		044	32	26.0	18.0.	26.0	34	A
# cath 2009 20114 *	alisa5_045.img alisa5_046	img	045-	32_	26.0	18.0	26.0	14	A
2	¢								>
RegEx (1) [7 R] Repl. (3) [7 J	Annuve (b)	A	Auto Date (8)	V B	1 mm	beiling [3]	1	₩.
Match Replace	Fretn 0 ÷ Lestn 0 ÷	Pretix	Mode No	ne		Mode	Suth	+ at 0	-
Replace	From 0 + 10 0 +		Type De	ation (C		Start	1001	- leer F	
12.377 rest. Although the second	Chers Words	The second se				Ped	3	* Seo	-3
T Include Ext. T Metch Case		et pos 0 🕂	Fmt DM	NC.		Contraction of the	Section 1	Haz 1	
100 [2] [2] R Case (4) [2]]		Sife	Sep	Seg		Bred	clo	主 !!	Folde
Name Fixed . Same .		-	Custom	2412020	-	Type	Eese	(Decimal)	
eliseli Excep	D/S Accents Chars	Word Space	E aut	OT 0		Ram	n Nume	mhi Non	
and a second	Sym Lead Dots None +		T Cent	04 0	÷	1	1000	1000 -0000	1.000
Nove/Capy (6)	17 B	Append Folder liame (5		-	F R	Dist	un inn (19)	7	- (¥.)
None • 1 ÷ None	• 1 ÷ 5ep	Name None + Se	ip Los	t of a	÷	Fo	ed _	• mg	
Selections (12)			New Location	(57)		- H	B		
Filter Folders Hid	dan Nome Len Min 🔟 🗄	Max 0 +	Peth			-		Reset	Sename
A CARLES AND A CAR		Max 0	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	iv not N	iove.			Reven	whiding
1 maar oose		- Market		- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1					
Working on multiple computers? S	inchronice your files across computers i	with ViceVersa PRO CI	ick Here To F	nd Gut!	Mare				
Objects (45 Selected) Favourite	45 item(s) successfully prov	100004				-			

- For some import tools image renaming might be required.
- There 50+ tools available on the internet. Here we would like to present a very powerful one: 'bulk rename'
- It has the possibility to pad names with zero to get names like aa_0001.xx.
- You can also inject run numbers for multi-run imports...

New bruker formats supported (CMOS)

- Data from photon100 detectors can be processed.
- The following observations can be made:
- The Mo gain of cameras varies from 260 to 450 in spite of specification
- The image gain is typically of the order 260 to 450 and the images are not divide as the Apex images in spite the of the header value e-/ADU 40.
- The 3 gaps of the Radeye chips are clearly visible and should be rejected with dc rejectrect for better data. The most offending one is the middle one.
- The offsets of the detector jump around significantly, so that smart background is the only method of choice.
- In spite of spec. and marketing material the chip shows blooming effects. The noise level behind beam stop is 150-200e- for exp <5sec, meaning >10 higher noise than ApexII.
- At same detector opening angle the Photon100 requires 2*longer exposure to reach the same R1 as ApexII for strong diffractors. For medium 3-4 and for weak >7 times. The detectivity seems very low as compared to ApexII.
- Frame overhead is 4-8sec from frame time stamps in shuttered mode.
- Cmos frames are large: 2Mb

New rigaku formats supported (CCD and Pilatus)

- New header format with CCD and Pilatus key words supported.
- The following observations can be made:
- The Pilatus Rigaku frames are large: 1.2Mb, the cbf has 0.3Mb.
- The dtrek createrunlist now handle awkward naming schemes
- Pilatus use all Pixel detector corrections (parallax, Si efficiency etc.) and handles gaps.

Run list and aliases file generator for DTREK data collections	×
This dialog allows you to quickly generate a *.run file and aliases file for the data reduction of a DTREK data set 1) You select image name1001.img	
 You select the last image to be considered (It is assumed that all frames between these two are available) 	
 3) Save the file 4) You will be prompted for entering some critical parameters (usually default values are OK, as they are taken from image headers) 	
5) Finally a new CrysAlisPro instance will be launched with the DTREK data set added to the experiment list	
 NOTE: Using CrysAlisPro you can process only DTREK images from selected Rigaku detectors! RAxis are not supported! Terminator format Run digits O Separator None Frame digits 3 nameFFF.img	
First dc DTREK dc file (*1001.img) Browse n/a	
Last dc DTREK dc file	
Help Cancel Save run fil	e

Esperanto with bit field compression and pixel detector support

- For our Esperanto importer we now can use Agilent bitfield compression for Esperanto files. The format is not documented yet.
- There was also a pixel detector flag added to support the implemented pixel detector corrections ([dsithicknessmmforpixeldetector] - thickness of Si for pixel detectors; the

presence of this number signals a pixel detector. Pixel detector gap zones are marked with -1.

Publication describes the Esperanto format

Single-crystal diffraction at the Extreme Conditions beamline P02.2: procedure for collecting and analyzing high-pressure single-crystal data

André Rothkirch, G. Diego Gatta, Mathias Meyer, Sébastien Merkel, Marco Merlini and Hanns-Peter Liermann

J. Synchrotron Rad. (2013). 20, 711-720

Generic image format 'Esperanto' generator

- Use of Esperanto format for unknown image formats with no compression or known formats with strange instrument configs
- Esperanto fully supports 4 circle instruments.
- Command 'dc rit' rit = raw image transform.
- But it also supports the known formats to handle 'unusual', obstinate images.
- Pixel detectors have an automatic dead zone detection based on the special value -1.
- The Esperanto generator uses a proprietary Agilent bit field format. To get back the uncompressed Esperanto version, please use the export function.

Dc rit: ADSC 315

C Known CrysAlsPro forme	E		
Generic uncompressed in	age		
Skp header bytes: 202	4 x= 3072 y= 1	072 Pixel type UNSIG SHOR	T (2 BYTES)
Frames info			
Run digita 🕘 👘	Separator Home -	Frane 3 • namefin	Filmg
100 March 1000 MT	operanto\ADSC_Quantum_315r\t operanto\ADSC_Quantum_315r\t		owse owse Run 1C
peranto output			
Images base name:	adsc210_best	Run # 1	
Rotation [deg]: 🔿 0	C 90 C 180 G	270 T Mirror	
Detector info Pixel size [mm]: 0.102	x0= 1024.0 y0×	1024.0 T > 99998.0 g	verfax
Instrument info			
Wavelengths MO	• 0.71, 0.71, 0.63	that while Synchrotron	Edit lambde
Monochromators	GRAPHETE E 16.3	RANE • divalue: 3.354	Edited-value
Alpha, Beta [deg]:	50.0, 0.0	Edit	
Omege0,Theta0, Kapp	e0 [deg]: 0.0, 0.0, 0.0	Edit	
Detector dist. [mm]:	90.0 Edit	Beam b2: 0.000 Ear	
Gaint	15.0 Edit	T Pixel det.	E.G. MA
Scan info 🖓			
Scan type:	C.PN Contract [0.0	Conega Pfs# 0.0	
	0.0, 1.0, 1.0 Edit	Theta= 0.0 Kappa	= 0.0
Scant start, step, expt (and an Indext Tubert, 1	Scan scale err L.0	00 Edit
Scant start, step, expt (100-1-1001 1-1001-1-1-1		
	10		

Command dc rit

Header bytes 1024, x 3072 y 3072 and other info from text header (f.ex with total commander)

Then esperanto createrunlist

Slight play in EwaldPro to get the center right.

Dc rit: ADSC 210

put format				
C Known CrysAlaPro format				
· Generic uncompressed ina	ge			
Skip header bytes: 3024	s 2048 y	# 2048 Pixel typ	UNSIG SHORT (2 B	(TES)
Frames info		200		
Run digits - 0 5	Separator Nome	- Frame 3	nomePPP.ing	
	xeranto\ADSC_Quantum_23 xeranto\ADSC_Quantum_23	Br\12mx tjp05_1_005.im	Browse	
peranto output			and a constant of the	
Images base name:	adsc210_test	Run #	1.	
Rutation (deg): 🔿 0	C 90 ⊂ 180	(* 270 🗆 Mirro		
Detector info				
Proel size [mm]; 0.302	x0= 1024.0 yo	0+ 1024.0	> 99999.0 overflor	2
Instrument info				
Wavelength: MO	• 0.71, 0.71, 0.63	Edit all, al2, to	Synchrotron	amteta
Monochromator:	GRAPHETE E	EPLANE + d-val	ue: 3.354 Edit (d-value
Alpha, Beta [deg]:	50.0, 0.0	-	Edit	
Omega0, Theta0, Kappa	G [dea]: 0.0, 0.0, 0.0	8 👘	Edit	
Detector dist. [mm]:	72.0	Beam b2: 0.000	Edit	
Gain:	15.0		The second s	174114
			Contraction of the second	
Scan Info 🔽 Scan type:	C. 8h	· Omega	Pts= 0.0	
Second Media	Transition - Transition - Trans			
Scan: start, step, exp: 0.		dit Theta=		_
The second descent operation of the second	der Iwlast, Zwlast-I	Scan s	cale er 1.000	EBI
Use frames in inverse or				
Use frames in inverse or				

Command dc rit

- Header bytes 1024, x 2048 y 20482 and other info from text header (f.ex with total commander)
- Then esperanto createrunlist
- Slight play in EwaldPro to get the center right.

Dc rit: MAR165ccd

format				
Known CrysAlisPro forma	t 🕅	IAR 🔻	marNNNN, pck,	mg
Generic uncompressed im				
			The line of the second second	
Skip header bytes: 0	≍= 2048	3 y= 2048	Pixel type UN	SIG SHORT (2 BYTES)
ames info	-			
Run digits 🗾 0	Separator None	▼ Frame	3 💌	nameFFF.img
F:\Data\2013\import_es				Browse
F:\Data\2013\import_es	peranto (MarCCD 165 \d			Browse
			port data from h	aders Run TC
ranto output				
ages base name:	data_01_		Run # 1	
otation [deg]: 🛛 🔿 0	C 90 💽 180	0 0 270	Mirror	
tector info				
Pixel size [mm]: 0.079	x0= 1035.	0 y0= 1031.0	□ > 9999	9.0 overflow
strument info				
Wavelength: CU	▼ 1.54, 1.54, 1.39	Edit al1, al2	, b 🗌 Synch	rotron Edit lambda
Monochromator:	GRAPH	HITE E 1E3PLANE	▼ d-value: 3.35	4 Edit d-value
Alpha, Beta [deg]:	50.0,0	.0	Edit	
	a0 [deg]: 0.0, 0.0	0, 0.0	Edit	
Omega0, Theta0, Kapp				_
Omega0,Theta0, Kapp Detector dist. [mm]:	90.0 Edit	Beam bi	2: 0.000 Edi	
	90.0 Edit	Beam bi	2: 0.000 Edi	
Detector dist. [mm]: Gain:		Beam b		
Detector dist. [mm]:				
Detector dist. [mm]: Gain: ann info Scan type:	1.0 Edit	57.0	∏ Pixel	det. Edit thk
Detector dist. [mm]: Gain: an info [1.0 Edit	57.0	Pixel	det. Edit thk
Detector dist. [mm]: Gain: an info [Scan lype: Scan: starb, stap, exp:	1.0 Edit	57.0	Pixel Omega Phi= Theta= 0.0	Edit thk 75.0 Kappa=
Detector dist. [mm]: Gain: an info [Scan lype: Scan: starb, stap, exp:	1.0 Edit	57.0	Pixel Omega Phi= Theta= 0.0	Edit thk 75.0 Kappa=

- Command dc rit
- Known format MAR (mccd)
- Then esperanto createrunlist
- Slight play in EwaldPro to get the center right.

Es

Dc rit: A200 detector

nput format			
C Known CrysAlsPro form	ot	-	
Generic uncompressed in	mage		
Skip heisder bytes: 33	84 x# 2048 y#	2048 Pixel type UNSIG SHORT ((2 BYTES) 💌
Frames info			
Run digitai 📼 👘	Seperator Home 🕞	Frame 3 • nameffithan	ng
1000 1000	esperanto\A200\data2_0201.eng esperanto\A200\data2_0210.eng	Drow Drow	
iperanto output			
Images base name:	a200_test	Run # 1	
Rotation [deg]: C 0	C 90 (* 110) (*	270 T Mirror	
Detector info			140
Ptxel size [nm]: 0.10	0 x0= 1024.0 y0+	1024.0 T > 99995.0 mve	sflave
Instrument info			
Instrument info Wavelengthi CU	• 154, 154, 135	TOTAL Synchrotron	dit lambida
100 million (100 m		in the second	de lambde de d-value
Wavelengths CU		and the second	
Wavelength: CU Monochromators	GRAPHITE E 163 50.0, 0.0	PLANE 💌 d-value: 3.354	
Wavelengths CU Monochromators Alpha, Beta [deg]:	GRAPHITE E 163 50.0, 0.0	PLANE 🔹 divalue: 3.354 📑	
Wavelength: CU Monochromator: Alpha, Seta [deg]: Omege0,Thete0, Kap	GRAPHITE E 163 50.0, 0,0 640 [deg]: 0.0, 0.0, 0.0	FLANE divalue: 3.354 C	
Wavelength: CU Monochromator: Alpha, Beta [deg]: Omega0,Theta0, Kap Detector dist. [nm]: Gain:	GRAPHITE E 263 50.0, 0,0 90.0 [deg]: 0.0, 0.0, 0.0 90.0 Edit	PLANE divalue: 3.354	dit d-value
Wavelength: CU Monochromator: Alpha, Beta [deg]: Omega0,Theta0, Kap Detector dist. [nm]:	GRAPHITE E 263 50.0, 0,0 90.0 [deg]: 0.0, 0.0, 0.0 90.0 Edit	PLANE divalue: 3.354	dit d-value
Wavelength: CU Monochromator: Alpha, Beta [deg]: Omega0,Theta0, Kap Detector dist. [nm]: Gam Scan info [4 Scan type:	GRAPHITE E 153 50.0, 0.0 90.0 [Steg]: 0.0, 0.0, 0.0 90.0 [Edit 15.0 [Edit /* PN Omega= 0.0	PLANE doualue: 3.354 Edit Beam b2: 0.000 Ean Pixel det.	dit di vadue Calit Mik
Wavelengthi CU Monochromator: Alpha, Beta [deg]: Omega0,Theta0, Kap Detector dist. [nm]: Gairu Scan info 17 Scan type: Scan: start, step, expc	GRAPHITE E 153 50.0, 0,0 90.0 [Steg]: 0.0, 0.0, 0.0 90.0 [Edit 15.0 [Edit (* PN Omega] 0.0 0.0, 1.0, 1.0 [Edit	PLANE divalue: 3.354 Edit Edit Beam b2: 0.000 Edit Pixel det. Omega 0.0 Theta= 0.0 Kappa=	di di value falit bia
Wavelengthi CU Monochromator: Alpha, Beta [deg]: Omega0,Theta0, Kap Detector dist. [nm]: Gairu Scan info 17 Scan type: Scan: start, step, expc	GRAPHITE E 153 50.0, 0.0 90.0 [Steg]: 0.0, 0.0, 0.0 90.0 [Edit 15.0 [Edit /* PN Omega= 0.0	PLANE divalue: 3.354 Edit Edit Beam b2: 0.000 Edit Pixel det. Omega 0.0 Theta= 0.0 Kappa=	dit di vadue Calit Mik
Wavelength: CU Monochromator: Alpha, Beta (deg): Ornega0,Theta0, Kap Detector dist. (nm): Garo: Scan info i7 Scan type: Scan: start, step, exp: Cuse frames in inverse	GRAPHITE E 153 50.0, 0,0 90.0 [Steg]: 0.0, 0.0, 0.0 90.0 [Edit 15.0 [Edit (* PN Omega] 0.0 0.0, 1.0, 1.0 [Edit	PLANE divalue: 3.354 Edit Edit Beam b2: 0.000 Edit Pixel det. Omega 0.0 Theta= 0.0 Kappa=	di di value falia di k
Wavelength: CU Monochromator: Alpha, Beta [deg]: Ornega0,Theta0, Kap Detector dist. [nm]: Garu Scan info 17 Scan type: Scan type: Scan: start, step, exp: C Use frames in inverse	GRAPHITE E IE I 50.0, 0,0 90.0 [Sleg]: 0.0, 0.0, 0.0 90.0 [Edit 15.0 Edit 0.0, 1.0, 1.0 [Edit order 1=lest, 2=lest-1	PLANE divalue: 3.354 Edit Edit Beam b2: 0.000 Edit Pixel det. Omega 0.0 Theta= 0.0 Kappa=	di di value falia di k

- Command dc rit
- Header bytes 3584, x 2048 y 20482 and other info from text header (f.ex with total commander)
- Then esperanto createrunlist
- Slight play in EwaldPro to get the center right.

Dc rit: Diamond ID 19 Dectris turned

£ format		
Known CrysAlaPro forme	nt DECTRUS 💌	
Generic uncompressed in	nage	
11 - 11 - 1 - 1 - 1 - 1	497	
irames info		
Run digita 💌 1	Separator Underscore 🙄 💌 Frame 🛛 5	• namuR_FFFFF.img
D:\data\2013\10\300k_	dexid_triell;e8_scansi/FAHAD_81deg_1_00001.	def drowes
D:\data\2013\10\300k_	david_triallalt_scansi/PAHAD_01dag_7_00400.	dd Drowne
	and a second	t dala from houstory Ran TC
eranto output		
nages base name:	PAHAD_01deg_ Rul	# L
atation [deg]: 🔿 p	€ 90 € 580 € 270 🕅	Mirror
etactor wfo		
Pool sze [mm]: 0.172	x0= 306.0 y0= 323.0	T > 00000.0 avertlaw
strument info		
Wavelength:	• 110 Per 201 - 50(10.00.0	🗟 Synchrotron 🛛 Soctemate
Monochromator:	MIRROR/SYNCHROTRON .	Poltact: 0.998
Alpha, Beta [deg]:	50.0, 0.0	Edit-
Omega0,Theta0, Kapp	aŭ [deg]: 90.0, 0.0, 0.0	200
Detector dist. [mm]:	106.0 Beam	0.000
Gain:	1.0	🖓 Poel det. 🛛 Editmik
ican intoj		
	C	120.0
	oligado de terror	25.0 90.0
	nationada 🗖	ican scale err 0.970
Confidence come		
Cost Sec	- 3	

- Command dc rit
- Use of known format dectris. Header values are read.
- Camera turned 270deg. Non-square detector is padded by zeros.
- The header scan values are wrong by 3% (Scan scale err 0.97)
- Then esperanto createrunlist
- Slight play in EwaldPro to get the center right.
- The several cycles to refine instrument model.

Dc rit: Diamond ID 19 Dectris turned II

out format		1
Known CrysAlsPro forma	DECTRIS	•] dbf
Generic uncompressed im	age	
- Replaced to the D	402 - 519	👘 нас Травноят слатер 👱
Frames info		
Run digits 📃 0	Separator Filippe - Fra	me 3 rame###.mg
	enal_formats_Tadeusz\300k_diamond enal_formats_Tadeusz\300k_diamond	Contraction of the Contraction o
peranto output		
Images base name:	mp1_00	Run # 1
Rotation [deg]: 🔿 👳	○ 90 ○ 180 ○ 270	/ Mirror
Detector info		
Posel size [nm]: 0.172	x0= 318.2 y0= 323.0	> 999990 overflow
Instrument info Wavelength: USER Monochromator:		
Alpha, Beta [deg]:	50.0, 0.0	Edit
Omega0, Theta0, Kapp	e0 [dec]: 0.0, 0.0, 0.0	Edit
Detector dist. [mm]:	114.0 [COLUMN Bea	n 62: 0.000 Edit
Gaint	LO FOIL	Pixel det. East thk
	77.0	
Scan info 🖓		Omega 0.0
Scan info 🔽 Scan type:	Phi Omega= 0.0	SURIEGO
Scan type:		
Scan type: Scan: start, step, exp: (0.0, 1.0, 1.0	Theta= 25.0 Kappa= 0.0
Scan type:	0.0, 1.0, 1.0	
Scan type: Scan: start, step, exp: (0.0, 1.0, 1.0 Edit	Theta= 25.0 Kappa= 0.0
Scan type: Scan start, step, expr Use frames in inverse of	0.0, 1.0, 1.0 Edit	Theta= 25.0 Kappa= 0.0

- Command dc rit
- Use of known format dectris. Header values are read.
- Camera turned 270deg. Non-square detector is padded by zeros.
- This data had NO scan scale error!
- Then esperanto createrunlist
- Slight play in EwaldPro to get the center right.
- The several cycles to refine instrument model.

Dc rit: IPDS

put format		
C Known CrysAksPro forma	*	
Generic uncompressed in	noge	
Skip header bytes: 153	6 x=1200 γ= 1200 Posei type STO	E CHAR
Frames into		
Run digits 💌 🕴	Separator Incine - Frame 3 -	nameFFF.img
Toldata 1014/2018000	Mathias/Wirovets/ajidstest1\amov_010001.si	The second se
	Mathias/Virovets/gdstast1/amox_010156.4	Browne
ar leade to the following		
	angest data transition	Run TC
speranto output		
Images base name:	Run # 1	
Rotation [deg]: 🖷 😐	⊂ 90 ⊂ 180 ⊂ 270 ⊑ Meror	
Detector info	and a star a second starter	
Pixel size [mm]: 0.150.	x0= 600.0 y0= 600.0	avention
commune funde Janes.	we from the factor of the factor	or or other
Instrument info		-
Wavelength: MO	• 0.71, 0.71, 0.63 Synch	otron
Monochromator:	GRAPHITE ELESPLANE 💌 d-value: 1.354	Edit diversion
Alpha, Beta [deg]:	50.0, 0.0	
Omega0, Theta0, Kapp	a0 [deg]: 0.0, 0.0, 0.0	
Detector dist. [mm]:	70.0 Cate Deam 0.000 2551	
Sam	15.0 Post Post	et. Circles
Scan info	i Phi Omegan 0.0 C Omega	1.5
Scan type:		
Scan: start, step, exp: 1	0.0, 2.3, 100.0 Theta= 0.0	Keppe= 0.0
Use frames in inverse	order 1=last, 2=last-1	1.000 Edg
Load		

- Command dc rit/Import button on power toolbar
- Read detector information from the sum file of IPDS (0.15mm pix, cen x=600, y=600)
- Stoe char as pixel type; .xi files (this is OD compression...)
- Make sure to use resolution limit due to round IP image (Mo typical 0.809Ang)

Dc rit: dtrek frame from Japanese synchrotron

	Esperanto importer (1.0.3)
Input format	
🕫 Known CrysAlisPra format	OTREK 💌 ngaku cod, pliatus
Generic uncompressed imag	
	JARS - JARS - JARS - JARS BORT CONTREL
Trames info	
	sperator fixing
100007094 774 44444049	
	gaku/sergey/prosp_esp/k_8ET5_Mn_org_6003.img
C. post in contract of the	
	Frank Mathematica State Stat
Esperanto output	
änages base name:	k_BETS_Mn_org_0 Run # 1
Rotation (dag): (** 0	● 90 C 180 C 270 F Meror
Detector who	
Poul size [mm]: 0.068	x0= 509.4 y0= 515.6 [> [99398.0] overflew
Instrument info	
Wavelength:	Constant Provident Provident
Monachromators	MBROR/SVINCHROTRON . Purfact: 0.360
Alpho, Beta [deg]:	90.4; 0.0
Omegall, Thetall, Kappall	[deg]: 90.0, 0.0, 0.0
Detector dist. (mm):	60.3 Beam 0.000 110
Gam:	15.0 Poel det.
Scan info	
netter f	(a.a) (c.a)
Furthern	Scan scale err 1.000
Contract of the New York,	1 200 000 000
Internet Total	
New -	Second ()

- Command dc rit/Import button on power toolbar
- The issue was here that the dtrek image was turn 90deg relative to the inhouse image. The dtrek createrunlist would not work on this.
- Thus the 'dc rit' command can be used to handly obstinate known images...

Dc rit: xpad detector

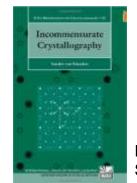
	Esperanto importer (1.0.3)
out format	
Known CrysAlisPro format	ESPERANTO -
Generic uncompressed image	
Ske header bytes: 1240	x= 579 y= 562 Plast type (FLOAT (4 BYTES)
Frames ofo	
Ran digita 💌 🛛 Sepana	itor France + 🕑 namefffff.dat
C:\xceldsurdata\2014\96\wenge	
C:/ocaliburdieta/2014/06/overge	arloped_ang_02_0001.dat
	And the Annual Statement
peranto output	
änages base name: xpot	d_mg_ Run # 1
Rotation (deg): 🕫 D 🦳 9	90 C 180 C 270 F Mirror
Detector who	
Ploat skas [mm]: 0.130	x0= 209.0 y0= 212.0 [> 00000.0 overflow
11000000000	
Instrument info	
	.71. 0.71, 0.63
	0.71, 0.71, 0.63 Synchrotran Synchrotran Million Million Million State
Monachramator:	
Wavelength: MO 💌 0 Monachromator: Alpha, Beta [deg]	MIRROR/SYNCHROTRON - Pullaci: 0.500
Wavelength: MO 💌 0 Mosachromatar: Alpha, Bata (deg): Omegall, Thetel, Kappal (deg	MIRROR/SYNCHROTRON - Putted: 0.500
Wevelength: MO 丈 0 Mosachromator: Alpha, Buta [deg]: Ornegali, Thetali, Kappali [deg] Detector dist. [mm]: 56.0	MIRROR/SYNCHROTRON - Purfact: 0.500 50.0, b.0 50.0, c.0 (c) 0.2, 0.7, b.0 6000 0.163 6.00
Wavelength: MO 丈 0 Mosachraosatar: Abha, fista (deg): Crnegab, Theted, Kappab (deg) Detector det, (mm): 56.0 Gam: 1.0	MIRROR/SYNCHROTRON - Purbet: 0.500 50.8, 8.0 () 0.2, 0.7, 8.0 8000 0.103 0.103
Wavelength: MO 丈 0 Mosachraceator: Alpha, Beta (deg): Omegab, Thetab, Kappali (deg) Detector dist. (mm): 56.0 Gam: 1.0 Scan brig/7	MSROR/SYNCHROTRON Putted: 0.300 50.0, 0.0 0.2, 0.7, 0.0 0.103 0.103 0.10 0.103 0.10 0.103 0.10 0.10
Wevelength: MO	MBROR/SYNCHROTRON Puthad: 0.300 50.3, 0.0 10 0.2, 0.7, 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10
Wrevelength: MO Mosachraoxator: Alpha, hata (deg): Omegath, Theted, Kappati (deg) Detector dist. (mm): 56.0 Gam: 1.0 Scan brfu(# Scan brfu(# Scan tripe: #44 Scan start, stap, out: 20.0, 6.5	MSROR/SYNCHROTRON Purfact: 0.500 Entrantion 50.4; 0.0 5.0
Wevelength: MO	MIRROR/SYNCHROTRON - Pullad: 0.300 50.3, 0.0 0.2, 0.7, 0.0 0.103 100 100 100 100 100 100 100
Wevelength: MO Monachromator: Alpha, thete (deg): Omegal, theted, Kappel (deg) Detector dat, (mm): 56.0 Gam: 1.0 Scan brfu(# Scan tripe: #Ma Scan: start, stap, copt: 20.0, 6.5	MSROR/SYNCHROTRON Purfact: 0.500 Entrantion 50.4; 0.0 5.0
Wevelength: MO Mosachraceator: Alpha, Buta (deg): Omegali, Thetel, Kappali (deg) Detector det. (mm): S6.0 Gam: 1.0 Scan: brfu@ Scan: brfu@ Scan: start, stap, exp: 20.0, 6.5 Use frames in inverse order 1-	MSROR/SYNCHROTRON Purfact: 0.500 Entrantion 50.4; 0.0 5.0

- Command dc rit/Import button on power toolbar
- The xpad detector is developed in France
- One of it's raw format can be channelled through the Esperanto importer
- As the header info is unknown, it has to be given in the scan info section.
- Provide the raw data file contains the -1 marker for pixel detectors the esperanto createrunlist command will automatically create a ccd file with dead zones.
- Such formats have to be transformed run by run as there is only one field for scan info.

Overview

Incommensurate structures

- Theoretical background
- Practical handling in CrysAlis^{Pro}


Incommensurate structures – Overview

- History
- Recognition of incommensurate structures in CrysAlis
- Symmetry limitation due to q-vector
- Data reduction
- Interface to Jana2006

History

- Satellite reflections are know since a long time -> super structures
- IUCR meeting Tokyo: de Wolff and Janner present a paper on 'Sodium carbonate' with satellites which are incommensurate to the main lattice

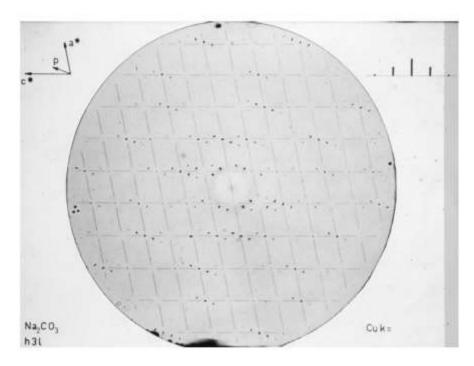


FIG. 1.11. Diffraction pattern of Na₂CO₃ (retigram; similar to a precession photograph). The measured X-ray diffraction has been overlayed with thin lines, highlighting the reciprocal lattice of the basic structure, p indicates the modulation wave vector. Reprinted from Tuinstra and Fraase Storm (1972) by courtesy of F. Tuinstra (Delft, The Netherlands).

From: Incommensurate Crystallography (IUCr Monographs on Crystallography), Sander Van Smaalen von Oxford University Press (7. Juni 2007)

History

Aperiodic distortions

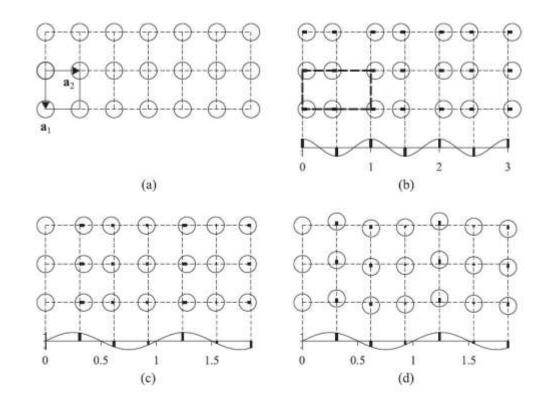
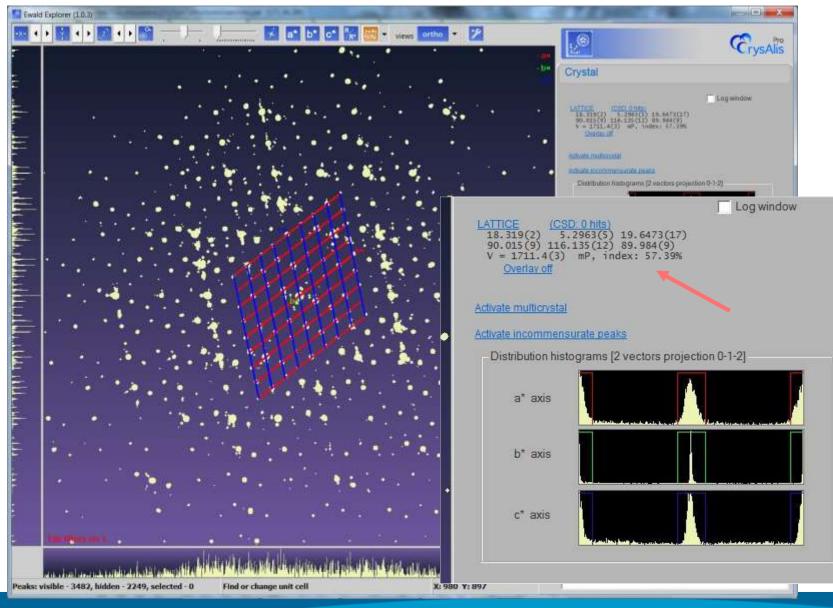


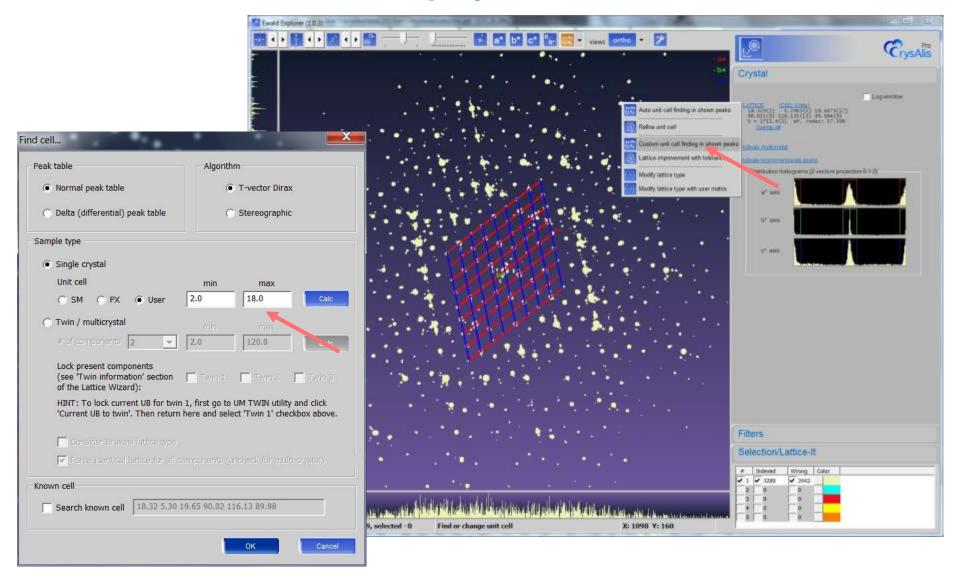
FIG. 1.2. Crystal structures with displacement modulations. (a) Basic structure. (b) Twofold superstructure with the supercell indicated by heavy dashed lines. (c) Incommensurate longitudinal modulation. (d) Incommensurate transversal modulation. Lattices of the periodic basic structures are indicated by dashed grids. Circles denote atoms that are shifted out of lattice periodic positions by varying amounts given by the heavy bars. Numbers count periods of the modulation waves $\mathbf{u}(\bar{x}_4)$ [eqn (1.7)].

From: Incommensurate Crystallography (IUCr Monographs on Crystallography), Sander Van Smaalen von Oxford University Press (7. Juni 2007)

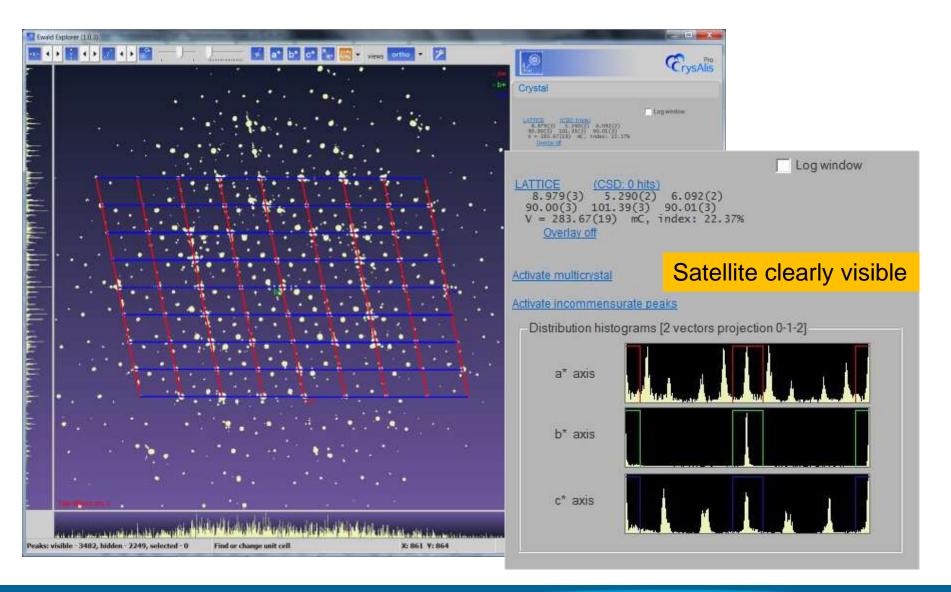


Recognition of incommensurate structures in CrysAlis

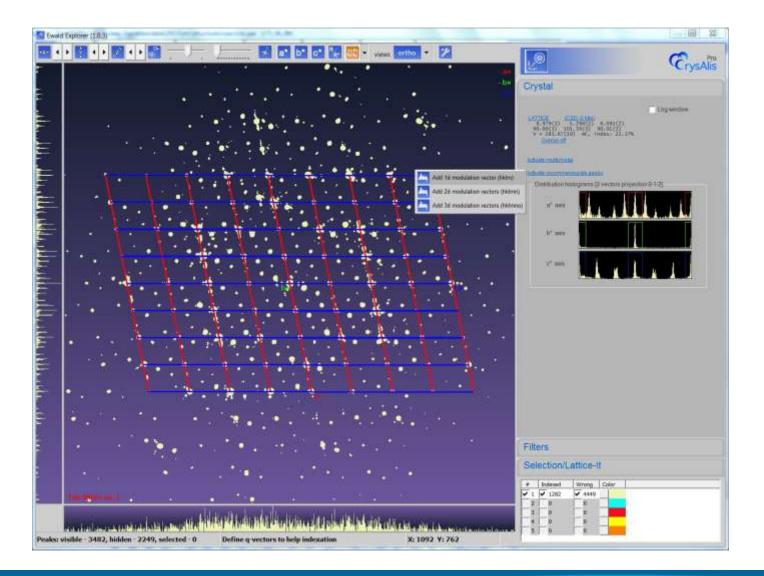
- Case Na₂CO₃
- Normal unit cell finding fails: Super cell found
- <u>Health warning</u>: samples of Naco are water sensitive and this is the baest sample ever after IUCr Tokyo: a multi-crystal/twin with 3 components: but component 1 is 80%



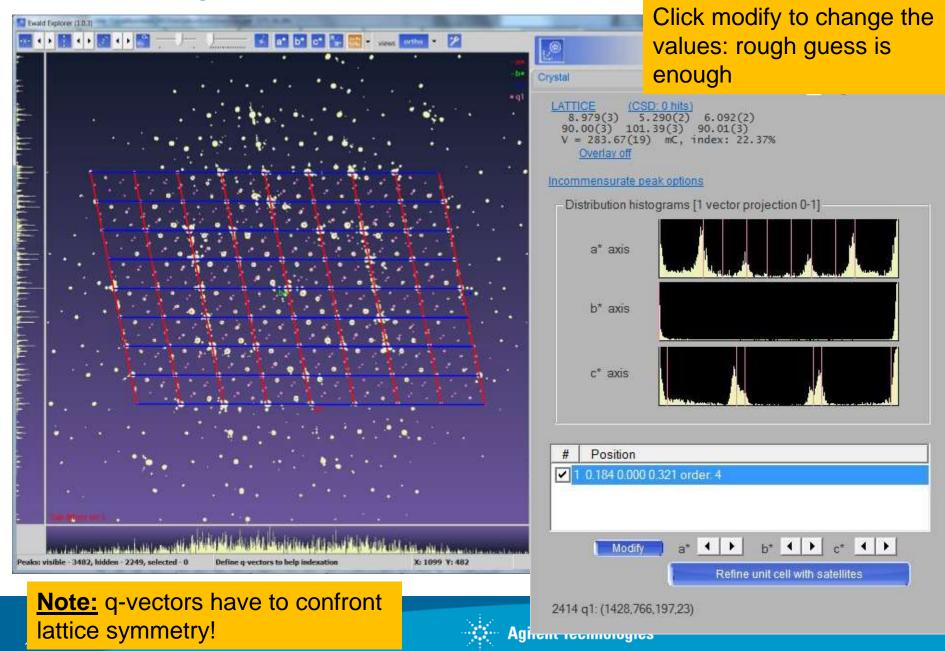
Naco: Super cell found



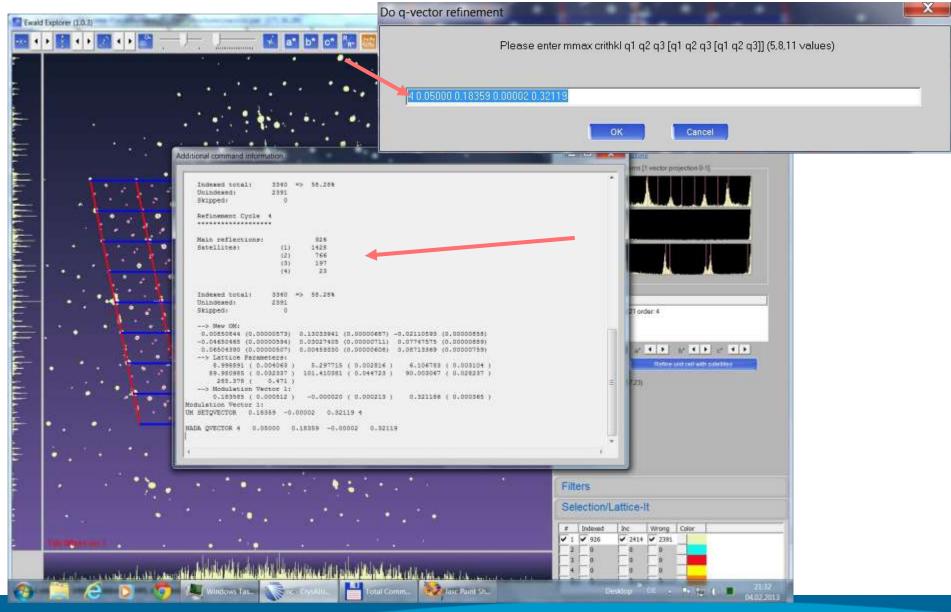
Naco: look for basic cell – play with custom cell



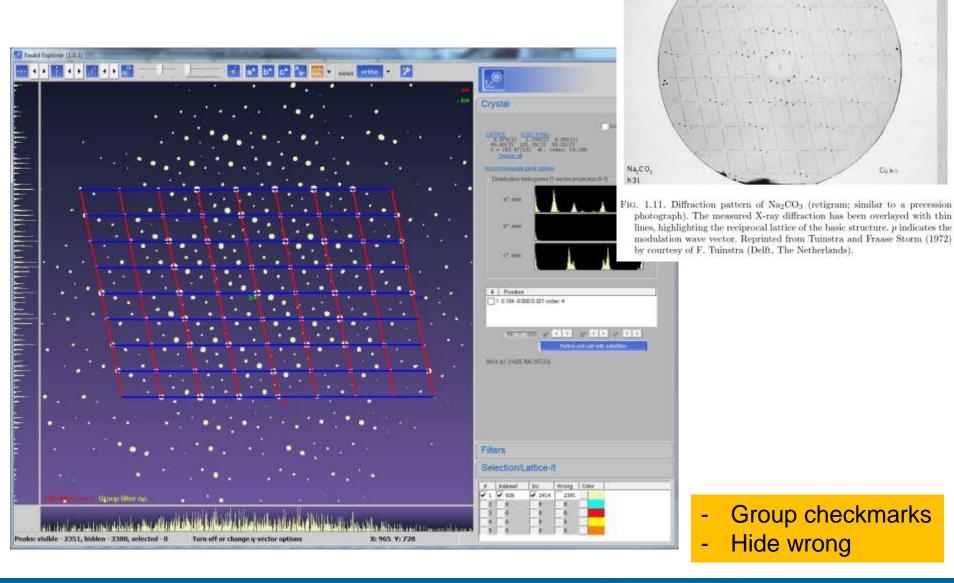
Naco: basic cell – indexation poor but simple q-vector



Naco: add q-vector



Naco: add q-vector



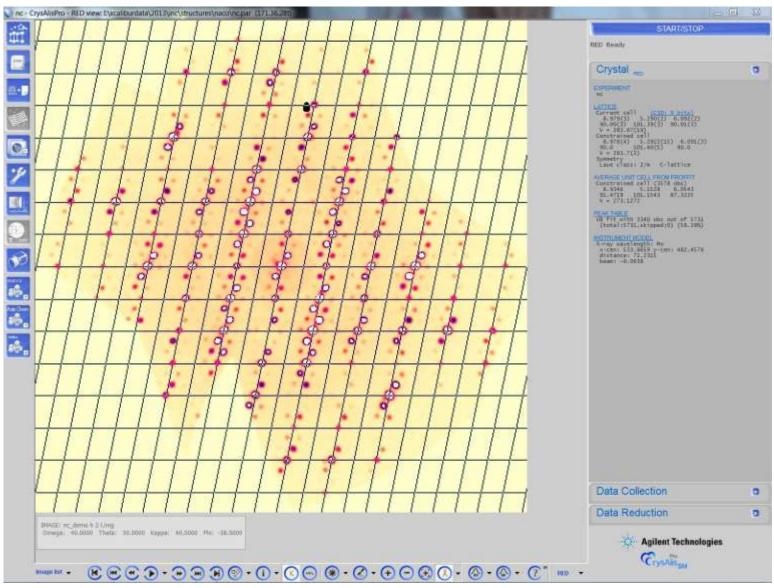
Naco: refine q-vector inspect results

Naco: clean the picture...

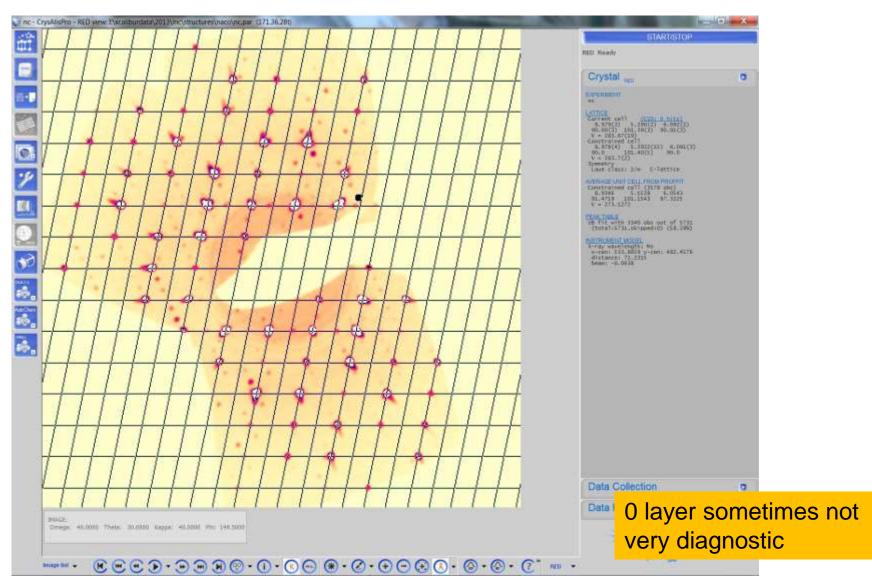
P

. 1 1 1

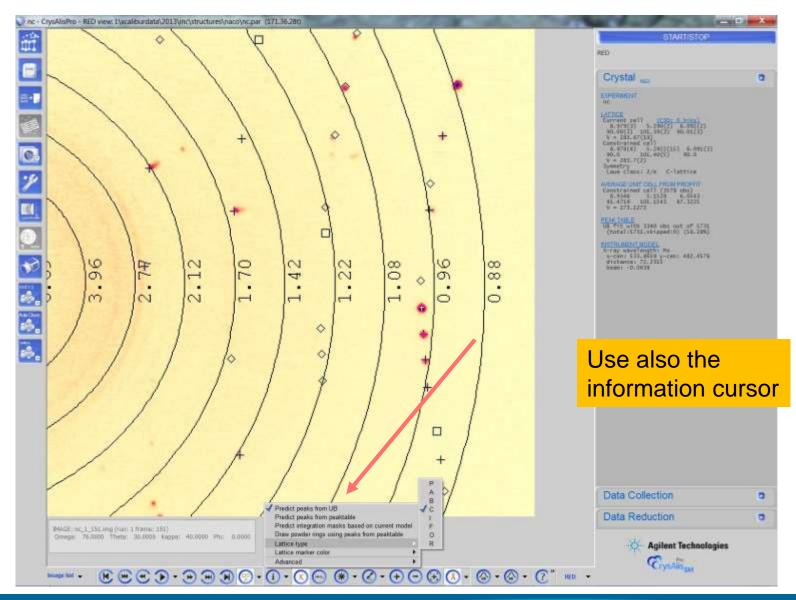
Naco: Lattice wizard


Peak hunting Unit cell finding 0 Image: Comparison of the com
Ewald explorer - reciprocal space Reindexation with current cell Refine instrument Lattice transformation
Refine instrument C Lattice transformation
Refine instrument Lattice transformation
model (🔐) transformation
model transformation
Twinning - Incommensurates / Quasi-crystals
Load information Save
Unwarping - Precession
images o
- Sorting
Clooping
- q-vector refin

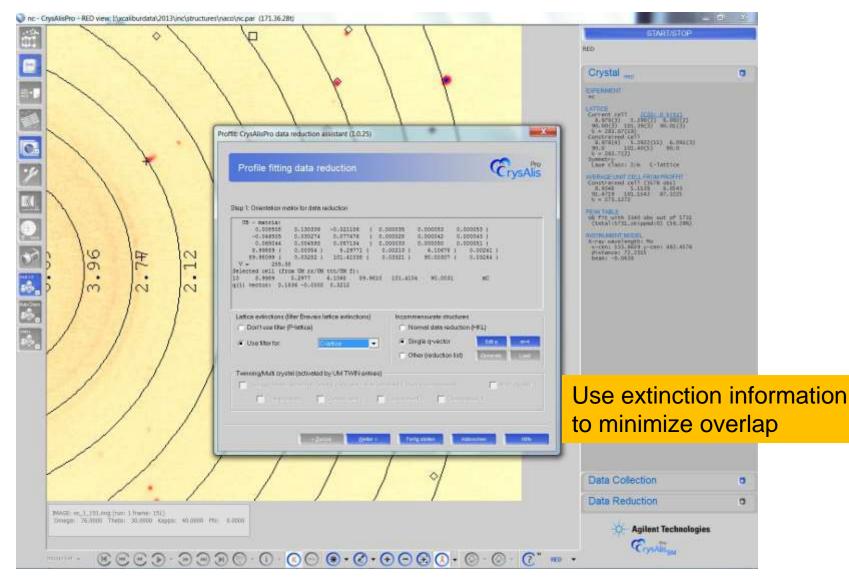
Naco: Run unwarp to gain better understanding



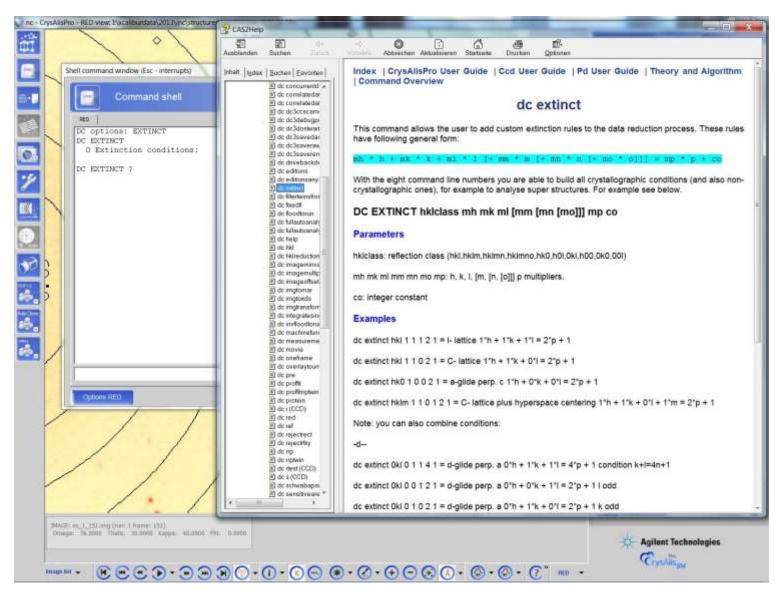
Naco: Run unwarp to gain better understanding: h 2 l



Naco: Run unwarp to gain better understanding: h 0 l



Naco: Check reflection predictions



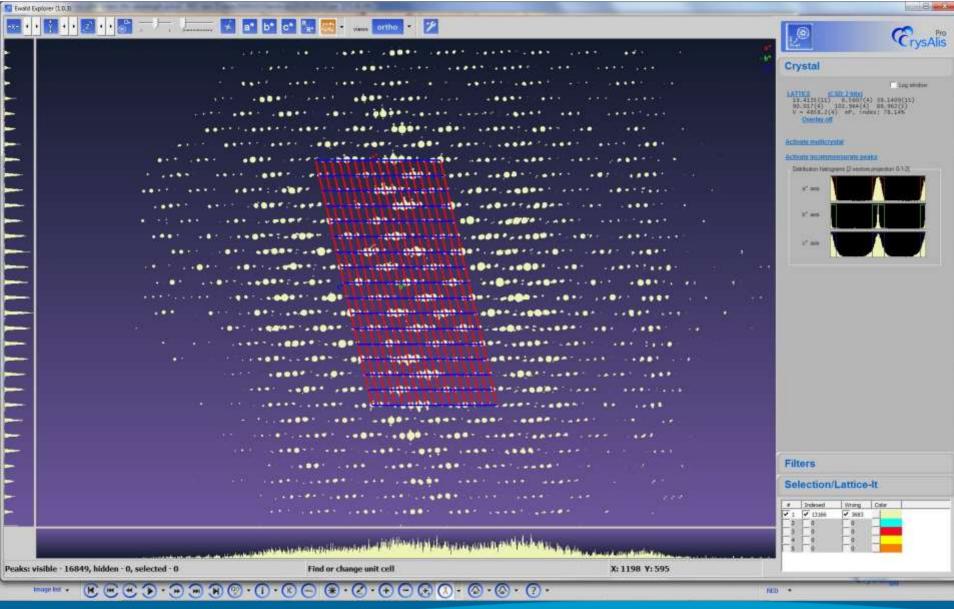
Naco: Data reduction

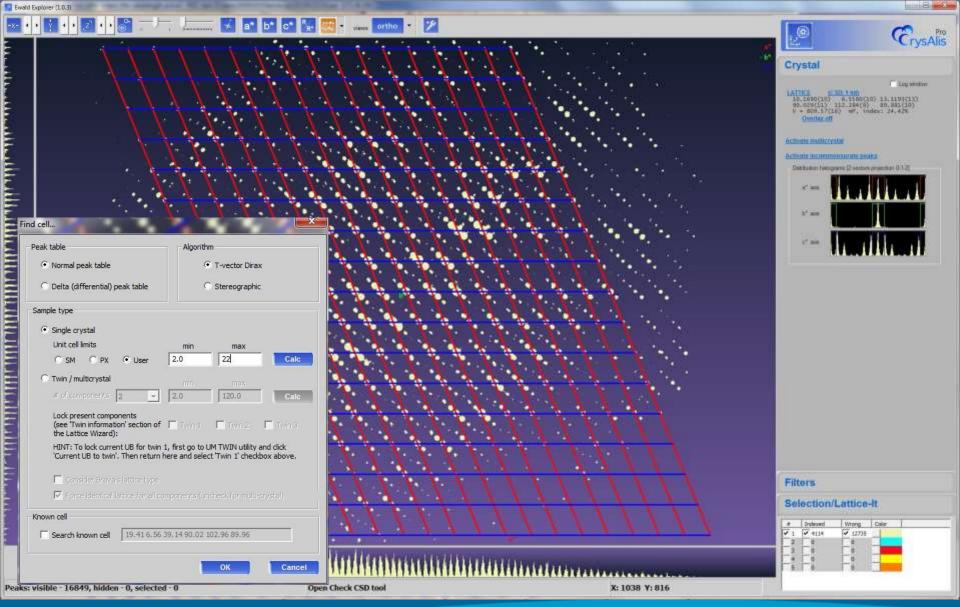
Naco: Alternative way to formulate extinctions

Naco: Check results

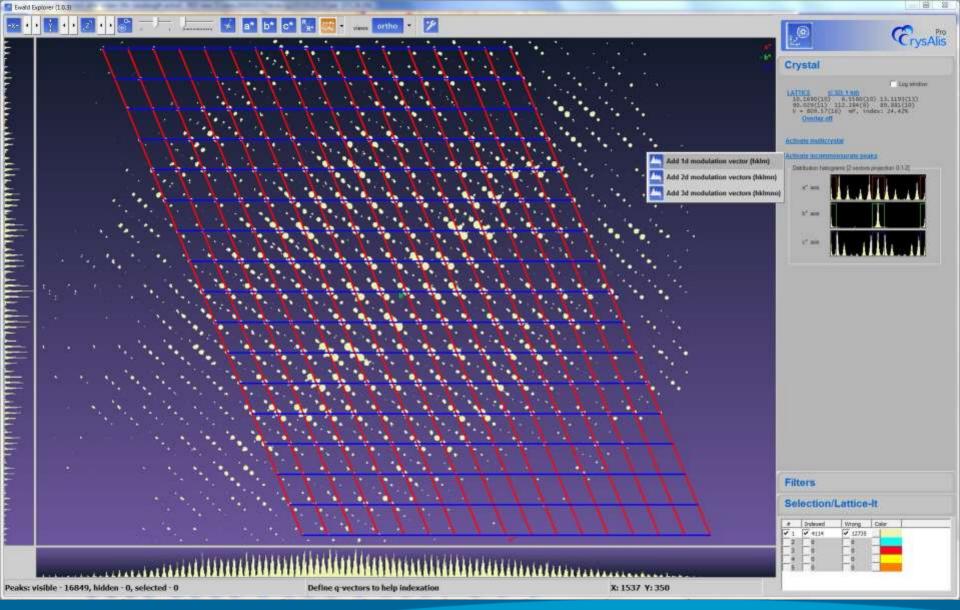
Sh	eil command wi	ndidw (Esc - in	terrupts)	_	1	1	_	L	1		1	Crystal
	🔁 c	ommand s	ihell							G	CrysAlis	Data Collection
	AED								S forma		Transporent	Data Reduction
	3	ntensity	neasured	kept	unique	redundancy	/ 92	F2/sig(F2)	Rint	Roigma	•	TRANSTRUCT
	1599685-	18923	1306	1272	254	5.0	137167.50	133.40	0.009	0.009		To vier Night 2007/11, weath 1100/1
	18918-		1213	1208	254	4.8	9459.02	34.68	0.020	0.022		TO FREERING - OFFICIAL
	4443-	1583	1204	1193	254	4.7	2775.95	18.96	0.832	0.035		Francy store: 1560 Aeffections tested, 13479, used: 3319
	1569-	611	12.42	1232	254	4.9	1008.56	10.95	0,053	0.062		Arg mmatrity [is degrees] - 3 cur(s) e1=0.94, e1=0.91, e1=0.35
	611-		1156	1142	254	4.5	431.59	6.98	0.090	0.105		Max incluies angle profile sharps(s1): 14
	281-	129	1144	1136	254	4.5	198.75	4.23	0.174	0.196		3D MATERIATION & PATTING
	128-		1120	1105	254	4.4	86.39	2.24	0.324	0.374		France dunci 1540 Fitted: 11500, coerflow: 0, hidden: 0
	53-		1097	1084	254	4.3	35,30	1.03	0.618	0.821		Fittad: 11508, overflow: 0, aiddani 0 Outlies rejected 119
10.1	20-		1060	1058	254	4.2	9,00	0.32	0.923	2,619		
	-1-		955	947	255	3.7	-14.46	-0.33	0.851	1.669		Private and the second
	1599685-	-84	11497	11378	2541	4,5	16813.69	23.21	0,011	0,012		PERCENTION CONTRACTORS
	resolu-	vs resol # measured	ution - p # kept	oint grou # unique	p symmeti	cy: C2/m (b average redundancy	mean	nean F2/sig(F2)	Rint	Rsigma	Rsign	Departural des (eré eré): prince d'argend a Prince traiter (2)((e)) prince d'argend a Internet scalar (2)(e) prince d'argend a ment de la scalar (2) prince d
	inf-2.21	1505	1478	259		5.7	30699.19	41.23	0.010	0,010	0.0	-107 0.05 - 4.5 - 21.7 0.011
	2.20-1.68	1428	1411	256		5.5	38033,65	36,50	0.011	8,011	0.0	Completeness: DE.1% (D.60 ANG)
111	1.67-1.43	1247	1236	250		4.8	23865.95	20.10	0.009	0.010	0.0	SPECIAL
	1.43-1.27	1330	1326	257		5.2	17219.50	22.85	0.009	0.011	0.0	Decomposition and a structures hasaffing the
	1.27-1.15	1152	1144	260		4.4	12176.42	19.67	0.012	0.014	0.0	EATA REPORTENDERING
	1.15-1.07	1034	1022	258		4.0	14968.04	18.22	0.009	0.011	0.0	.30 profile fitting asad.
	1.06-1.00	1189	1184	255		4.6	6597.70	12.91	0.016	0.018	0.0	
	1.00-0.95	934	921	258		3.6	5953.23	11.35	0.015	0.016	0.0	
4	0.95-0.88	91B	910	25.4		3.6	6909.91	12.26	0.018	0.021	0.0	
	0.00-0.70	760	746	226		3.3	4534.19	11.35	0.023	0.023	0+0	
	inf-0.78 inf-0.80	11497 11488	11378 11369	2541 2533		4.5 4.5	16813.69	23.21 23.21	0.011	0.012	0.0	
	Redundant	output ta bbin file cate/quas TOR 0.1 OR 0.05	ble is no : "I:\xca i-crystal 8375 -0. 000 0.1	t printed liburdate informat 00005 0 0375 -0.	\2013\ind ion .32117 4 00005 (ummensurate Catructure	reflection			5157576		
	1			21.				_				
1												

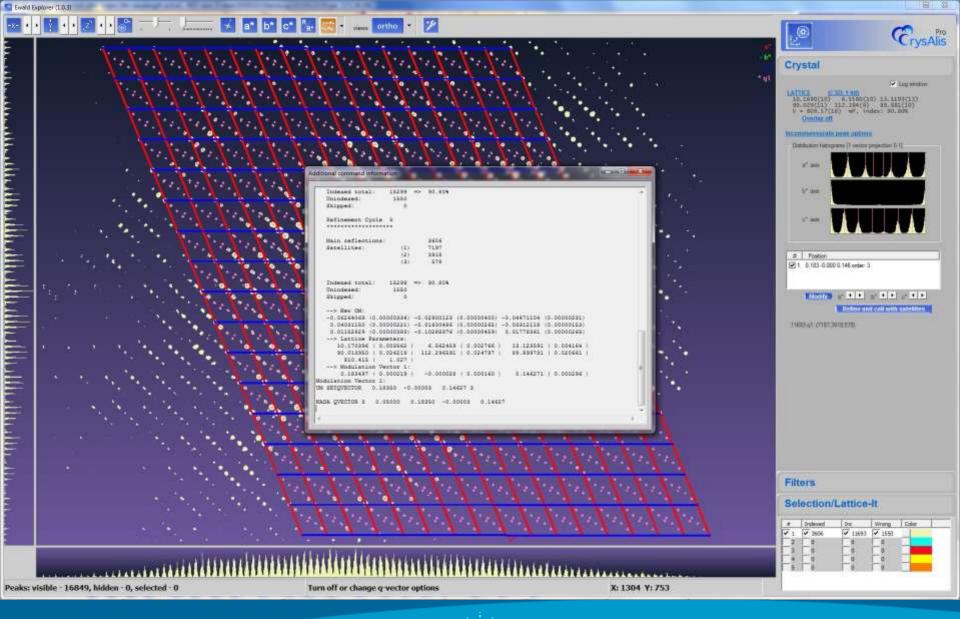
Naco: Strength of satellites

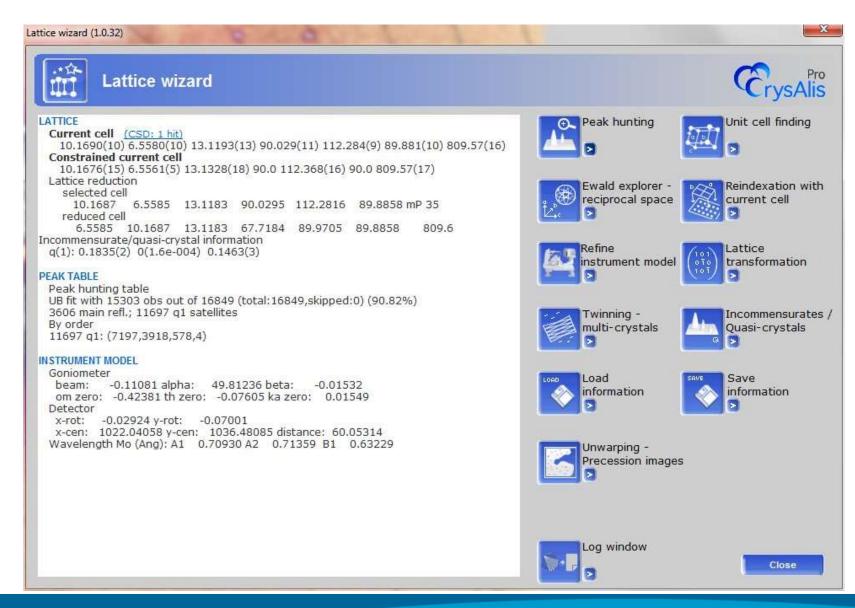

<u>Main refl</u>	ections								
resolu-	#	#	#	average	e mean	mean			
tion(A)	measured	kept	unique	redunda	ncy F2	F2/sig(F2)	Rint	Rsigma	RsigmaA
inf-0.78	1274	1230	290	4.2	101051.65	88.11	0.008	0.009	0.005
Satellite	reflectio	ns							
inf-0.79	10223	10148	2251	4.5	6603.53	15.34	0.016	0.019	0.019
1. order	satellite :	reflectio	ns						
inf-0.79	2592	2547	577	4.4	22747.40	40.22	0.012	0.015	0.012
2. order	satellite :	reflectio	ons						
inf-0.82	2564	2553	565	4.5	2976.23	13.65	0.024	0.030	0.039
3. order	satellite :	reflectio	ns						
inf-0.80	2561	2550	562	4.5	449.45	4.88	0.075	0.099	0.127
4. order	satellite :	reflectic	ns						
inf-0.81	2506	2498	547	4.6	132.35	2.39	0.189	0.244	0.300

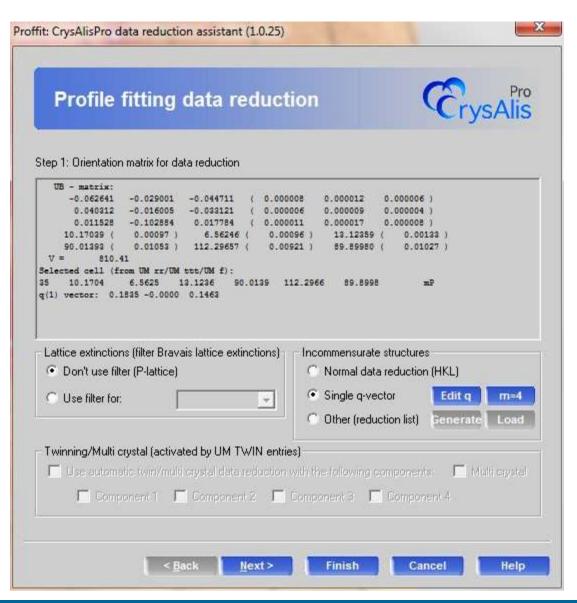

Recognition of incommensurate structures in CrysAlis

- Case Oldenburg
- Sample with high order satellites
- Normal unit cell finding fails: Super cell found









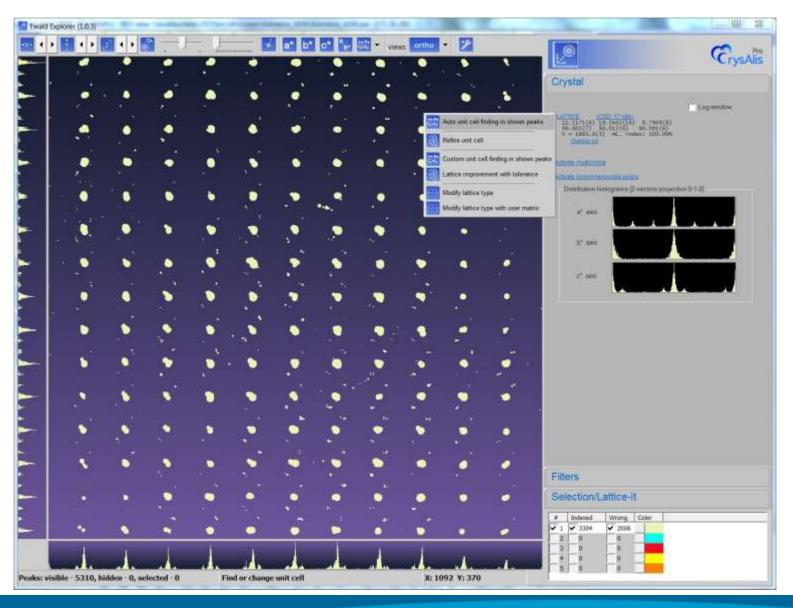
Oldenburg: Strength of satellites

Main refrections	Main	reflections	
------------------	------	-------------	--

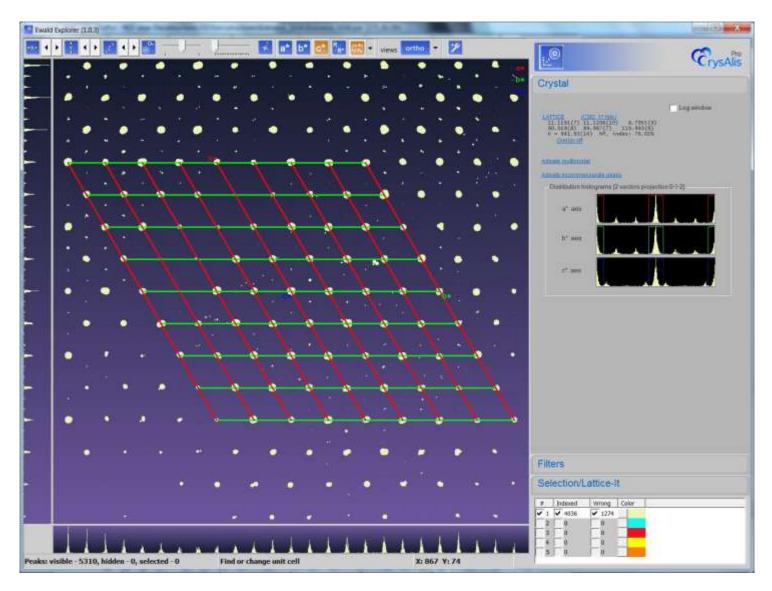
resolu-	#	#	#	average	mean	mean			
tion(A)	measured	kept	unique	redundancy	F2	F2/sig(F2)	Rint	Rsigma	RsigmaA
inf-0.8	0 6588	6543	3 1813	3.6	22536.12	18.98	0.019	0.022	0.022
Satellit	e reflectio	ons							
inf-0.80	55590	54668	16211	3.4	2911.76	6.00	0.049	0.061	0.082
1. order	satellite	reflecti	lons						
inf-0.80	13890	13827	4055	3.4	8502.10	12.87	0.025	0.031	0.048
2. order	satellite	reflecti	lons						
inf-0.80	13897	13827	4052	3.4	2024.81	6.17	0.056	0.067	0.116
3. order	satellite	reflecti	lons						
inf-0.80	13905	13743	4065	3.4	540.78	2.84	0.168	0.188	0.272
4. order	satellite	reflecti	lons						
inf-0.80	13898	13271	4039	3.3	466.63	1.96	0.328	0.318	0.328

Recognition of incommensurate structures in CrysAlis

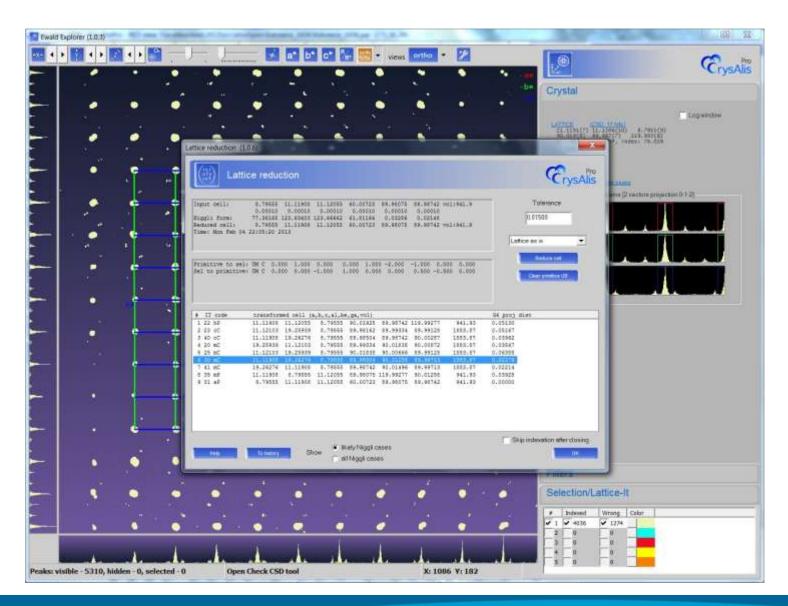
- Case katowice_165K
- Mistaking commensurate super-lattice as incommensurate!
- Normal unit cell finding fails: Super cell found

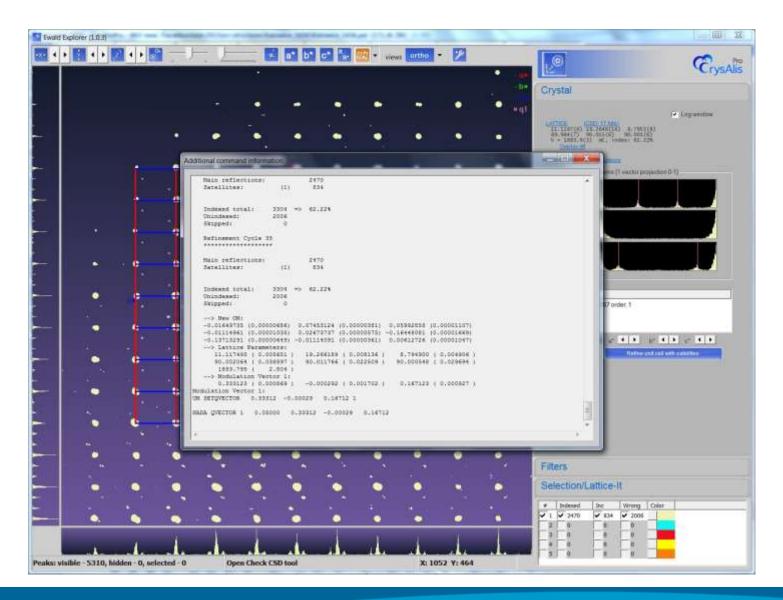


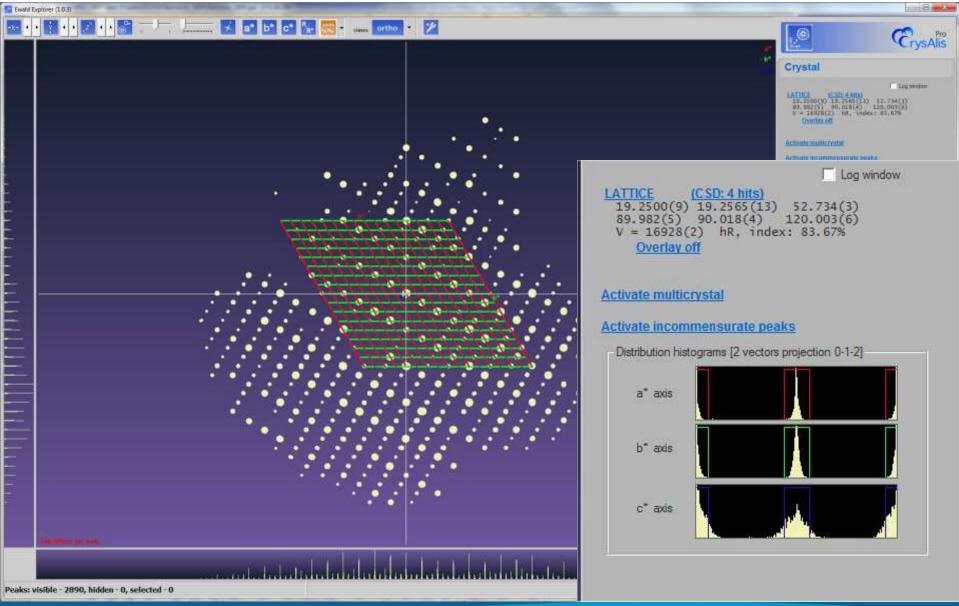
S Ewald E	Apilorer (1.0.7)	-	-	10.00	- Jane An	-	Street of the local division in which the local division in the lo	Lan J.T.A.	-				
			1 -)	_		_	•	🔛 = vie	we ortho			Ø	CrysAlis
E.		-		- 1	•	-7		•				Crystal	Cigarano
	•	٠		•	٢	•	•		٢	0			gwittee
		•	•	•	•	•	•	6		•		UNITED (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
			.0		-10	At	- ta	÷	÷			LastaLast	
	1	2					2	-				Adher Statement and	
	•	•		٥			. •			•		Diambuton hatograma (2 vectors (argentins 0-7-2)	
		•			-	1			•	-			
	4.5					-			. if			5° ani,	
E				- `		1				•	-	14 Ann.	
	0	٩			۰		•	•			•		
		5		•	`			0		-			
E			2	-									
E							. .						
		١		•		.*					•		
			٠				•		5	•			
El													
:			3					•	1		1	Filters	
		0		-	•	0	P	-		•	•	Selection/Lattice-It	
-	•	•	-	-	•	-			- 5	•		# Indexed Wrang Color √ 1 ✓ 2284 ✓ 2800 2 8 8	
				-	de	-	-	1	1	-			
Peaks: vie	sible - 5310, hi	dden - 0, se	lected - 0	Ho	ld LMB and	nove: XY ro	tation.		X: 9	20 Y: 753			

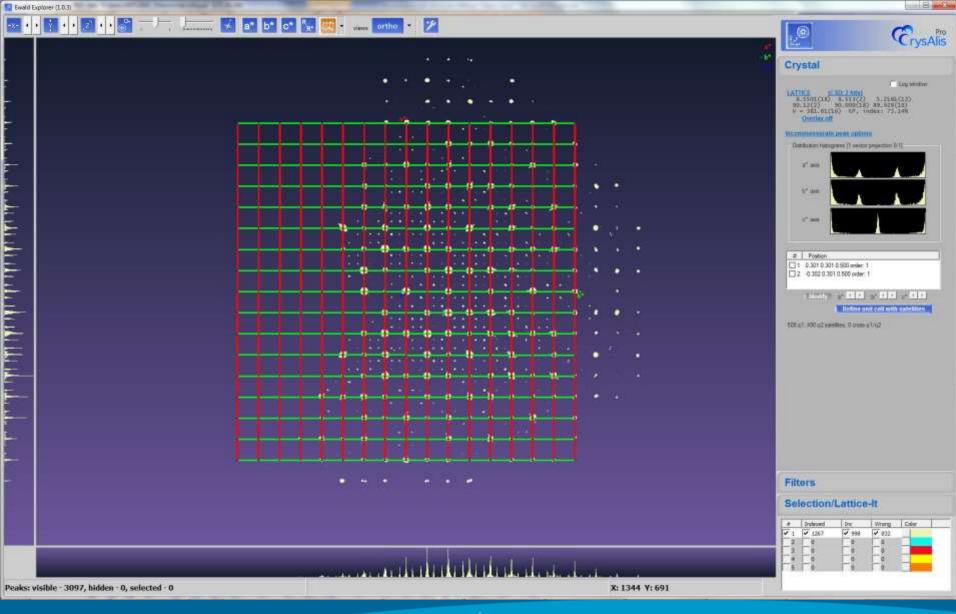


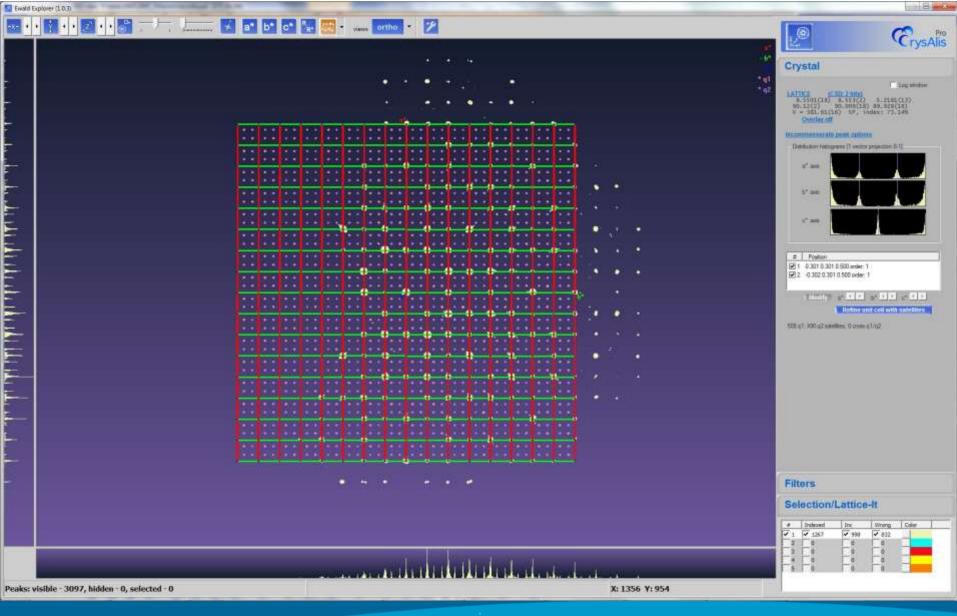
Ewald Explorer (1.0.3)	A. S. In Station Learning Street, or	10.4.0 P. 10.0	
		Annual Annual Annual	Crysalis
	1 1 2 I		and services
	1 1 1 V	- V - V - V	Crystal
	· · · · · · ·		Lagendue
	* * * *		10,000 10
	1 2 2 2		Ewald Epicer options 111
			Appenditie Size of peaks Latters are
i i i i	N X Y 🤅		C 1 (C 2 (#.3 (C 80) 4 💽
1			Lattice overlay, and generative eachers thickness
	1 N 1 1	· · · · · :	
	1 2 2 3	1 1 1 1 1 1	Background Likker (Linkney
			Laford Daar
	3 3 3 3 B	1 1 1 V	Number of groups: 5. Default processor
			User interface settings
			F (Awaya hide SwoldPro Server (small screen)
- X X Y	N N N N		Teollar paulani in up dever
		e	🖙 Save hidden pesis with skp flag (on ext)
	A 2 2 3		Scan perameters
	× × × ×		yfi = IIII.BI
			ad = 45.00
	N 2 2 2	3 2 2 2	
	· · · ·		Selection/Lattice-It
			# Indexed Wrang Color
			2 0 0
Peaks: visible - 5310, hidden - 0, selected - 0	Hold LMB and move: XY rotation.	X: 816 Y: 211	



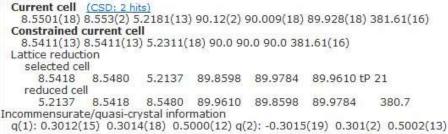







Recognition of incommensurate structures in CrysAlis

- Case fresno/raccolta
- Tetragonal sample with 2(!) q-vectors!
- Symmetry dictates the orientations



Lattice wizard (1.0.32)

LATTICE

PEAK TABLE

Peak hunting table UB fit with 2265 obs out of 2265 (total:3097,skipped:832) (100.00%) 1267 main refl.; 508 q1 ; 490 q2 satellites; 0 cross q1/q2

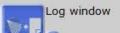
INSTRUMENT MODEL

Goniometer

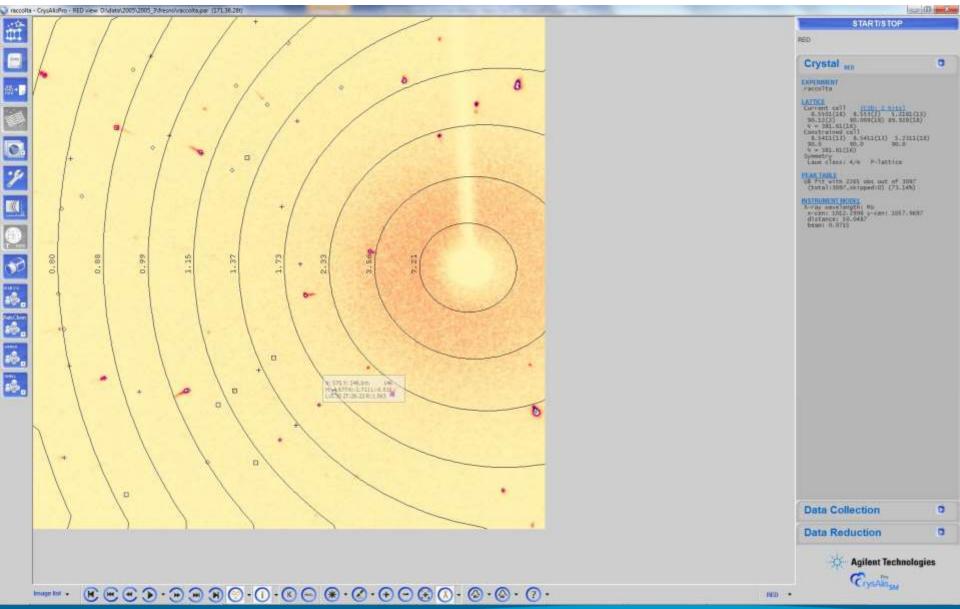
beam: 0.07153 alpha: 49.94538 beta: 0.00990 om zero: 0.15902 th zero: -0.50465 ka zero: 0.24275 Detector x-rot: -0.56156 y-rot: 0.11022 x-cen: 1012.29978 y-cen: 1057.96971 distance: 50.04869 Wavelength Mo (Ang): A1 0.70930 A2 0.71359 B1 0.63229

Lattice transformation X

Pro VSAlis



Save information

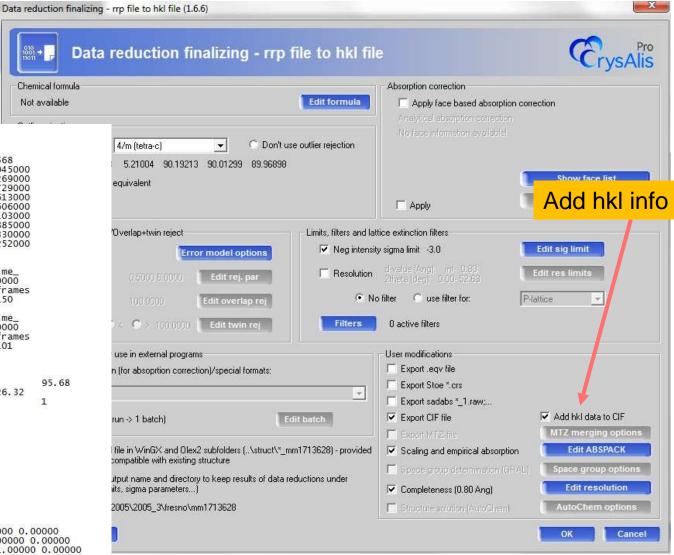


Unwarping -Precession images

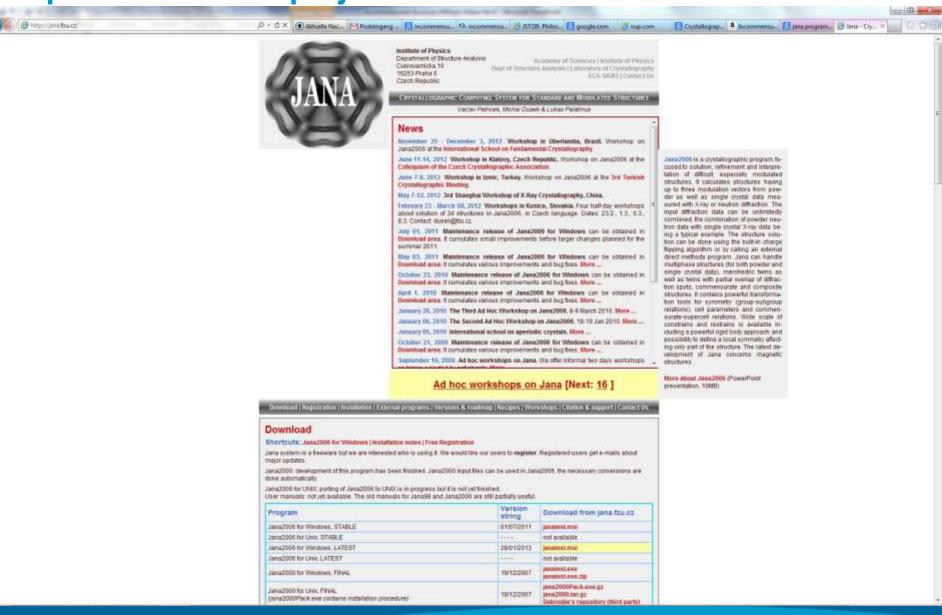
I,hklm,hklmn et CrysAlis
h k l m n [2-d (in)commensurate]
hkl max (from resolution limit): 13 13 8
or mmax: 1 Edit mmax
or nmax: 1 Edit nmax
or onex: U Edit omax
21)
ex for cross reflections: 0 Edit max index
Show rules
es and DC CLEAREXTINCT to remove selected or all
OK Cancel

Fresno: Strength of satellites

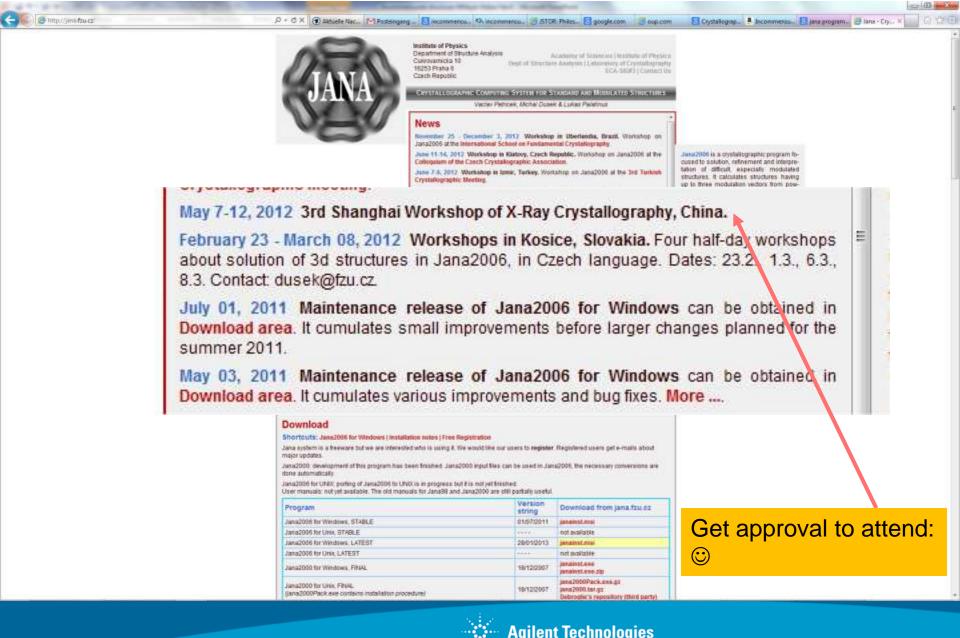
DC RED/RRP INFO: Incommensurate/quasi-crystal statistics


maA
037
426
0

Export to Jana

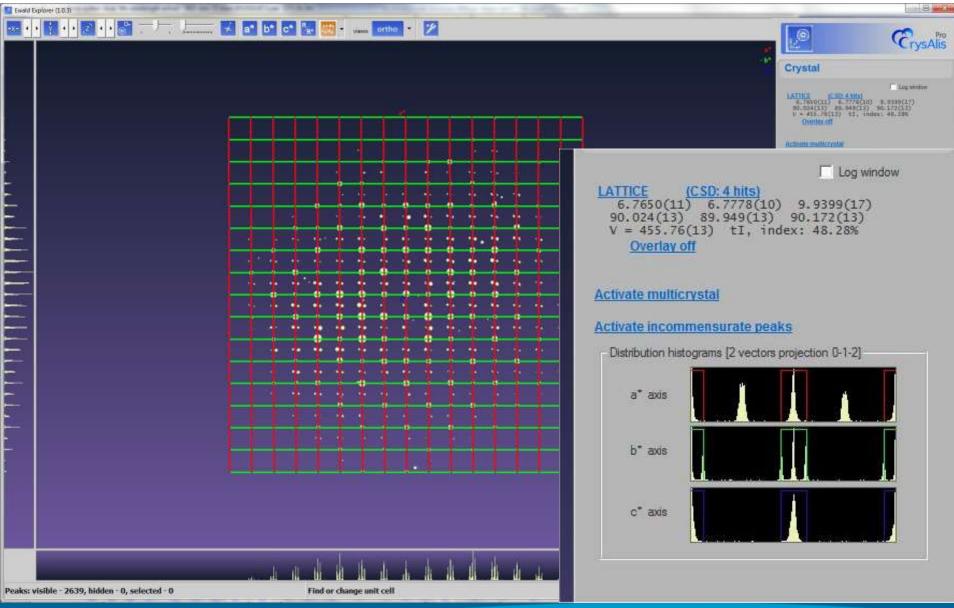

Via hkl or CIF

diffrn_reflns_theta_min 4.5503 diffrn_reflns_theta_max 29.4106 diffrn_reflns_theta_full 26.3154 _diffrn_measured_fraction_theta_full 0.9568 diffrn_orient_matrix_UB_11 0.0761045000 diffrn_orient_matrix_UB_12 -0.0229269000 diffrn_orient_matrix_UB_13 -0.0397729000 0.0041613000 _diffrn_orient_matrix_UB_21 diffrn_orient_matrix_UB_22 0.0664606000 _diffrn_orient_matrix_UB_23 -0.0811103000_diffrn_orient_matrix_UB_31 0.0330885000 _diffrn_orient_matrix_UB_32 0.0442330000 0.1019252000 _diffrn_orient_matrix_UB_33 _diffrn_measurement_details type_ start__ end_ nd_____width____ 50.42 1.0000 exp.time_ 1 omega -99.58 30.0000 omega____ theta__ _ kappa_ _ phi_ frames -23.0000 -10.0000 30.0000 150 type_ start__ end_ _ width_ _ exp.time_ 2 omega -86.80 14.20 1.0000 30.0000 _ phi_ _____ theta__ kappa_ omega_ frames -15.0000 -70.0000 0.0000 101 diffrn_measurement_method '\w scans' _reflns_odcompleteness_completeness 95.68 _reflns_odcompleteness_theta 26.32 _reflns_odcompleteness_iscentric 1 loop_ _hk1_oxdiff_h _hk1_oxdiff_k _hk1_oxdiff_1 _hk1_oxdiff_m hk1_oxdiff_n hk1_oxdiff_f2 _hk1_oxdiff_sig _hk1_oxdiff_ba _hkl_oxdiff_frac_h hkl_oxdiff_frac_k _hk1_oxdiff_frac_1 2 1 0 0 0 144968. 3413.03 2 2.00000 1.00000 0.00000 1 -2 0 0 0 140331. 2963.35 1 1.00000 -2.00000 0.00000 -2 -1 0 0 0 138886. 3098.56 1 -2.00000 -1.00000 0.00000 -2 -1 0 0 0 137255. 3336.35 2 -2.00000 -1.00000 0.00000 2 0 0 0 0 84763.1 2668.13 2 2.00000 0.00000 0.00000 -2 0 0 0 0 85509.2 2688.20 2 -2.00000 0.00000 0.00000 0 0 0 83962.7 2045.80 1 0.00000 -2.00000 0.00000 0 -2 2 -1 0 0 0 140081. 3503.16 2 2.00000 -1.00000 0.00000 -1 -2 0 0 0 141876. 2698.34 1 -1.00000 -2.00000 0.00000 2 -1 0 0 0 140580, 2998.18 1 2.00000 -1.00000 0.00000 -2 1 0 0 0 138181. 3547.67 2 -2.00000 1.00000 0.00000 2 -2 0 0 0 208573. 4578.08 2 2.00000 -2.00000 0.00000

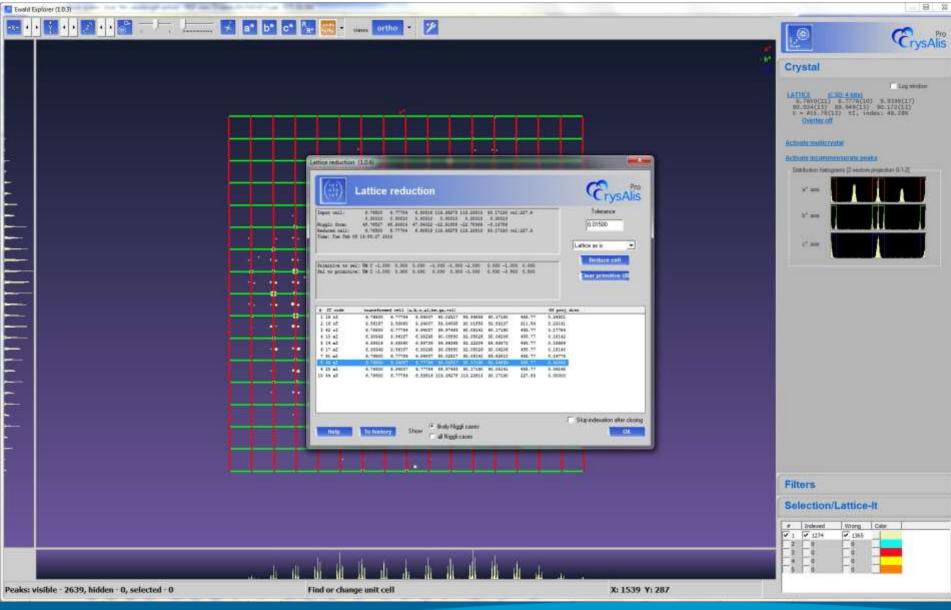


Export to Jana: http://jana.fzu.cz/

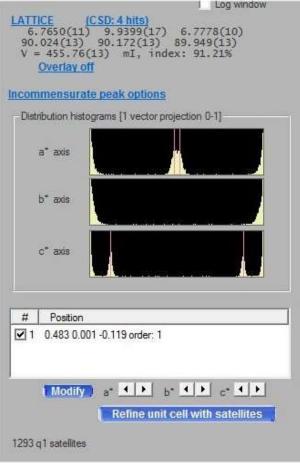
Export to Jana: http://jana.fzu.cz/



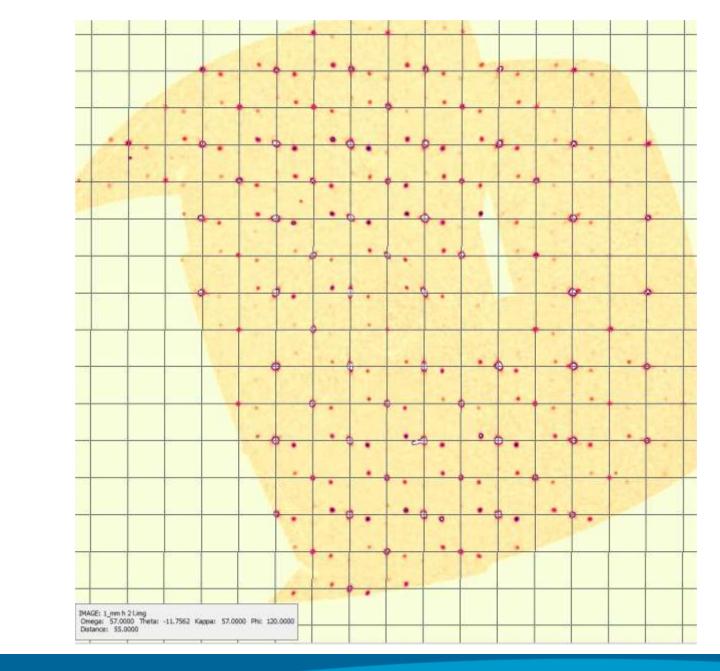
Recognition of incommensurate structures in CrysAlis


- Case IC/1
- Pseudo tetragonal sample. Satellite show the symmetry reduction.
- Satellites with two components dictates monoclinic (http://superspace.epfl.ch/;http://it.iucr.org/resources/finder/)

	Separation of the local division of the loca	Graup Hinder	a second for	a)	1.00	entriel Die Die bestehend gewahlte auf mehr	a makes
Annual (1) / J.M. groups.						or stard, for 30 strong and	
field, until the owned in solar. How is		the other states				The dated in part paint integral to get	
Contraction (1/2	10.000		11-120 gravite 10-1 Machicaetti		manager P.201, P.81, P02	Louist.
	-	11.00.0	_	07110-011			
CONTRACTOR CONTRACTOR CONTRACTOR		14. Feb 24. Feb		11.4 Milweltings		inanth results.	
()+(2) server offician or Miles ande.	-						
* Not the growing matrice matrice or Martin o	and the low spectrum						
Experiment stade fast of provid- 1) from anothe group installed of	distanting of the						
Its mercentric contracts front, of physicals.	Contraction of						
to monitor study fast of provide the study gives instant of	1004			2.44 - 0.44			
August with the discussion of the second sec	100410 (1) 01 0-1		+5				
Access and be deeper	100-00 (1) 01 8-1 05 9(4)	81 1710 -	45 6014 -	ns m(m			
And the second s	100410 (1) 01 0-1	81 1710 -	4-5 1014 104				
Access and be deeper	100-00 (1) 01 8-1 05 9(4)	a nos fille	45 6014 -	ns m(m			
Property and the dependence of the second se	100000 100 01 8-1 09 014 09 014	80 4 mpm 611/4	4-5 1014 104	- 86 91/0 111.0			
A contract of the dependence o	10044 (1) 81 8.1 95 811 96 100	4 1996 4 1996 1 110	8-5 1024 444 309	ns m(m			



Evald Explorer (1.0.3)	An AVAILAB THE AVAILAB THE AVAILABLE AVAILABLE AVAILABLE AVAILABLE AVAILABLE AVAILABLE AVAILABLE AVAILABLE AVAI	
	🛃 a. b. c. 🔐 🥮 ortho - 🔀	Crystal Cry
		Contractif Incontraction Log window LATTICE (CSD: 4 hits) 6.7650(11) 9.9399(17) 6.7778(10) 90.024(13) 90.172(13) 89.949(13) V = 455.76(13) mI, index: 91.21%
		Overlay off Incommensurate peak options Distribution histograms [1 vector projection 0-1] a* axis
		b" axis
		# Position ☑ 1 0.483 0.001 -0.119 order: 1
		Modify a* • b* • c* • • • • • • • • • • • • • • • • •
Peaks: visible - 2639, hidden - 0, selected - 0	Define q-vectors to help indexation X: 893 Y:	incus y i solonitos



Watch out: Ewald are projections

- In pseudo-orthorhombic: 0.48 0 0.119 roughly the same as 0.48 0 -0.119
- Cross check predictions

IC: Strength of satellites

DC RED/RRP INFO: Incommensurate/quasi-crystal statistics

Main reflections

Statistic	s vs resolu	ution - po	oint group	symmetry: P2/m (b	o-unique)				
resolu-	#	#	#	average	mean	mean			
tion(A)	measured	kept	unique	redundancy	F2	F2/sig(F2)	Rint	Rsigma	RsigmaA
inf-0.80	1400	1358	494	2.7	115665.31	24.92	0.025	0.026	0.032
Satellite	reflection	ns							
inf-0.80	5918	5866	2233	2.6	6711.75	5.10	0.069	0.077	0.136
1. order	satellite :	reflection	ns						
inf-0.80	2968	2954	1121	2.6	12464.12	8.40	0.056	0.063	0.115
2. order	satellite :	reflection	ns						
inf-0.80	2950	2912	1112	2.6	876.41	1.76	0.248	0.274	0.431

Powder diffraction with CrysAlisPro

- Agilent XRD instruments are single crystal diffractometers. They use almost parallel X-ray beams for sample illumination. The geometry is open beam, hence no Soller slits reduce background.
- The instrument is calibrated for the single crystal application. The calibration is only exact at the 'near' calibration point. Experiments at distances other than the near point rely on the model interpolation in conjunction with 'refine model'. This means that the instrument model might not be as accurate as required for powder diffraction, but reasonable good for single crystal application.
- Powder diffraction, like single crystal diffraction is a volume effect. For good results a reasonable amount of sample has to be brought into the beam preferably with little dull diffraction material like capillary, glass stick, excessive oil/grease etc. We recommend loop or Mitigen mounts as they have low background diffraction.

Sample mounting

- There are many successful mounting techniques. For good results a reasonable amount of sample has to be brought into the beam preferably with little dull diffraction material like capillary, glass stick, excessive oil/grease etc. We recommend loop or Mitigen mounts as they have low background diffraction.
- Make sure to have a good ground powder, as for a powder diffractometer experiment.
- Try to increase the amount of material to a similar volume as single crystal. Powder diffraction is weak. The more sample volume the better. The more sample volume to dull volume the better.


Wavelength

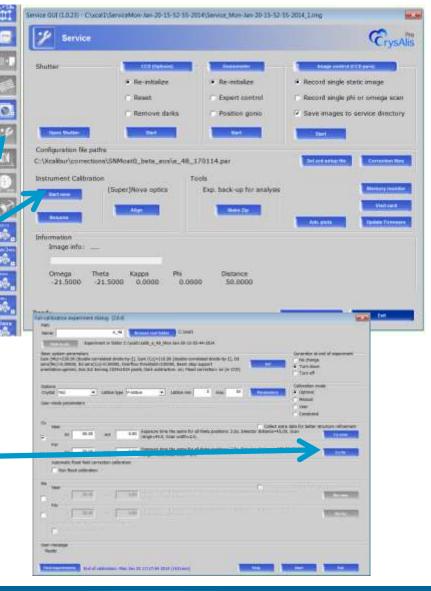
 While the Gemini let's you the choice of Mo or Cu, powder diffraction will generally be done with Cu for it's diffraction power. Exceptions are heavy absorbers or HP setups.

Resolution, distance, binning

- The resolution of a powder diffraction experiment depends on several factors: scintillator, distance, source, binning, sample divergence.
- The resolution is limited due to the scintillator thickness (40-80microns). The scintillator resolution is 2*scintillator thickness. Eos has a front pixel size of: 1x1 = 33microns; 2x2 = 66microns; 4x4 = 132microns. Atlas has a front pixel size of: 1x1 = 50microns; 2x2 = 100microns; 4x4 = 200microns. So 2x2 and 4x4 binning are reasonable with respect to resolution. Your camera's 1x1 pixel size you find on the 'instrument model I' tab.
- The source divergence is of the order of (5-10mRad = 0.3-0.6deg). For a divergent beam doubling the distance will also double the size. So generally the close distance is fine. The long distance may only lower the background (1/r²).

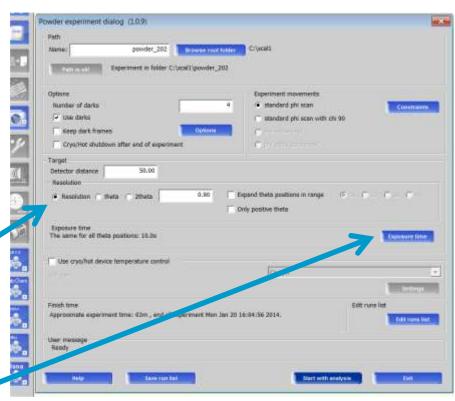
Instrument calibration

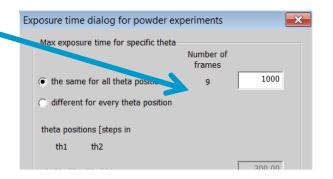
- As was said: The instrument is calibrated for the single crystal application. The calibration is only exact at the 'near' calibration point. Experiments at distances other than the near point rely on the model interpolation in conjunction with 'refine model'. This means that the instrument model might not be as accurate as required for powder diffraction, but reasonable good for single crystal application.
- How to find the near calibration point? On the tab 'Distance calibration' there is a section 'Close distance calibration'. For this distance the powder extraction is the most accurate. We will treat the case of an arbitrary distance later. It also requires that the calibration is valid for the current setup.
- The instrument calibration is only required if the machine setup is <u>uncertain</u>, or someone <u>changed</u> <u>X-ray optics settings</u>.


Instrument calibration 2

- As said on the previous slide. The 'near point distance' is fine for powder diffraction experiments. It is recommended to use this setup for powder diffraction. Then no calibration is required.
- There is no special calibration for powder experiments. The instrument is calibrated with the single crystal test sample.
- For powder experiments at arbitrary distances refer to later slides. Here a special procedure might be required.

Do an instrument calibration (only if required!!!)


- The instrument calibration can be easily archived:
- Mount the standard sample ylid. Make sure the sample <u>very well centered</u> and checked in 8 positions.
- Open the service wrench power tool.
- There click on 'Instrument calibration' -> start new.
- Select the required wavelength for calibration (here Cu) and click start. The default settings generally are fine. If you have a weak source or small ylid you might want to increase the default exposure by clicking on 'Cu near'/ 'Cu far' and adjusting the exposure time there...



Powder experiments

- After a successful calibration you can use the instrument for powder experiments at the near calibration point.
- Mount you sample with F12 and center it well
- Click on the Powder power tool to plan the experiment.
- Put the distance roughly to the near point (55.0234 can be 55mm). Select the target resolution. Expand theta will put extra settings to the experiment.
- Set the exposure time: Note that powders may require very long times. The instrument will
 chop very long exposures to several images
 and add them
- Click on 'Start with analysis' to do the experiment

Powder pattern extraction

- During the experiment the pattern will be automatically extracted.
- 'Lattice information' allows to put lattice line marker on the plot. If you have a structure res file you can even put 'Structure factors'
- 'Options' changes the extraction options. After changing the option you might need to click on reprocess. (Look at the history window output for details...)
- You can zoom the pattern

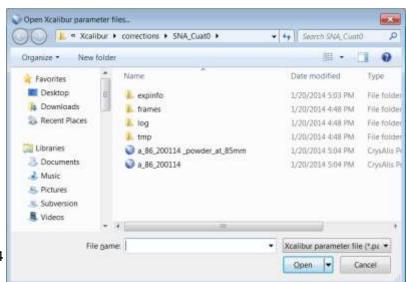
Powder Graph		20			
24		International In		I.	
18 - 12 -		4	7		
6-				0 40 18.3005, bipris-95, 88, beta-98.00, gamm tensty6.8 2670	60 2theta [==60.00
	20	40	60 2theta [deg	90 100	120
Lattice: a=15.4056, 2 theta constrain	s=15.4056, c=15.4056, s mn	6.101 max	123-485	.00 Dont Reproves	
🔽 2 theta constrain	s mn	6.101 max	123-485		6.0 (
🔽 2 theta constrain	s mn	6.101 max	123-485	Advanced options Output file CSAS format	

Example of history window output

POWDER DATA ANALYSIS INFO: Started at Mon Jan 20 16:12:59 2014

POWDER CORRECTIONS: Corrections flags: S POWDER CORRECTIONS: lorentz threshold: 0.050 POWDER CORRECTIONS: smooth filter not applied! L-correction is not applied P-correction is not applied Scan speed is rescaled to 20.00 s F-L fit2D is not applied POWDER INFO: Resetting 2896 append bins with thetamin= 0.00050 thetamax= 61.74229 POWDER RADIAL INFO: 1523 of 2896 valid bins with 2theta: 53.44657 to 118.36608 Powder pattern copied into file (C:\xcall\powder 203\powder 203 powder)! POWDER INFO: image theta -86.000, Exposure time=1.00 POWDER INFO: Statistics: valid min pixel=-35, valid max pixel=10889, theta min=26.72, theta max=59.18 POWDER INFO: valid pixels=997424, valid bins=1523, masked pixels=51152, skipped pixels=0, bad pixels=0 POWDER INFO: Append data to 2896 append bins with thetamin= 0.00050 thetamax= 61.74229 POWDER RADIAL INFO: 2624 of 2896 valid bins with 2theta: 6.48442 to 118.36608 Powder pattern copied into file (C:\xcall\powder 203\powder 203 powder)! POWDER INFO: image theta -31.529, Exposure time=1.00 POWDER INFO: Statistics: valid min pixel=-35, valid max pixel=377431, theta min=3.24, theta max=59.18 POWDER INFO: valid pixels=893150, valid bins=2624, masked pixels=155426, skipped pixels=0, bad pixels=0 POWDER INFO: Append data to 2896 append bins with thetamin= 0.00050 thetamax= 61.74229 POWDER RADIAL INFO: 2633 of 2896 valid bins with 2theta: 6.10053 to 118.36608 Powder pattern copied into file (C:\xcall\powder 203\powder 203 powder)! POWDER INFO: image theta 31.529, Exposure time=1.00 POWDER INFO: Statistics: valid min pixel=-36, valid max pixel=258718, theta min=3.05, theta max=59.18 POWDER INFO: valid pixels=976192, valid bins=2633, masked pixels=72384, skipped pixels=0, bad pixels=0 POWDER INFO: Append data to 2896 append bins with thetamin= 0.00050 thetamax= 61.74229 POWDER RADIAL INFO: 2753 of 2896 valid bins with 2theta: 6.10053 to 123.48457 Powder pattern copied into file (C:\xcall\powder 203\powder 203 powder)! POWDER INFO: image theta 90.933, Exposure time=1.00 POWDER INFO: Statistics: valid min pixel=-36, valid max pixel=11279, theta min=3.05, theta max=61.74 POWDER INFO: valid pixels=997314, valid bins=2753, masked pixels=51223, skipped pixels=39, bad pixels=0 POWDER DATA ANALYSIS INFO: Finished at Mon Jan 20 16:13:08 2014 Warning: F2 of (0,-2,-2) was modified from 1403567.3 to 999999.0 Warning: F2 of (-1,-1,-3) was modified from 1040141.6 to 999999.0 Warning: F2 of (-1,-1, 3) was modified from 1038842.9 to 999999.0 Reading 1565 observations from C:\xcall\calib e 48 Mon-Jan-13-19-00-06-2014\Mo\Near45mm\Mo Near45mm.hkl

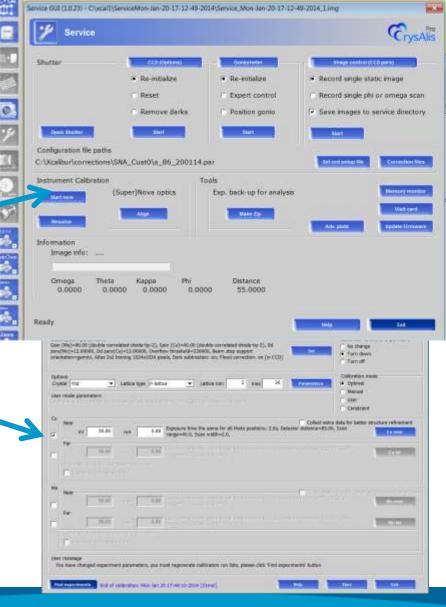
 Note that the extracted pattern will land in a file.


Powder experiments at arbitrary distances (PEAAD)

- The previous slides showed how to exploit the 'near calibration point' for the occasional powder experiment.
- 'Real professionals' might want to choose their experiment distance.
- The following slide will show the procedure on making a custom (x)par file for powder experiments at arbitrary distance.
- As an example we will use 85mm on Cu wavelength on an Atlas SN

PEAAD 1

- Make a copy of your current par file: Mine is 'a_86_200114.par'. The powder one I will call 'a_86_200114_powder_at_85mm.par'.
- The new par is selected as the new ccd configuration file (under 'Configuration file paths' -> 'Set ccd setup file').
- The software prompts to restart the software, which I accept.
- I may be prompted to select to proper binning. This can be avoided by also making a copy of 'a_86_200114_1_1.img' in the frames folder to 'a_86_200114 _powder_at_85mm_1_1.img' and in the root folder 'a_86_200114.run' to 'a_86_200114 _powder_at_85mm.run'
- I will now proceed the with ylid calibration at a single distance: here 85mm.



PEAAD 2 – single distance calibration

- Mount the standard sample ylid. Make sure the sample <u>very well centered</u> and checked in 8 positions.
- Open the service wrench power tool.
- There click on 'Instrument calibration' -> start new.
- I select the required wavelength for calibration (here Cu). Only the 'Near' model, edit the 'Cu near' the distance to 85 mm, close all sub dialogs and click on 'Find experiments' and the 'Start'

Parameters for a given	experiment			
Detector distance	84			
Scan range/run	40.0	Scan w	idth 🗌	2.000
Exposure time				
A STATISTICS AND				7/522 4
It the same for all the	eta position			default:
C different for every	theta position			
Random theta	sets (steps in deg)	10		
mid1 from	to mid		to	

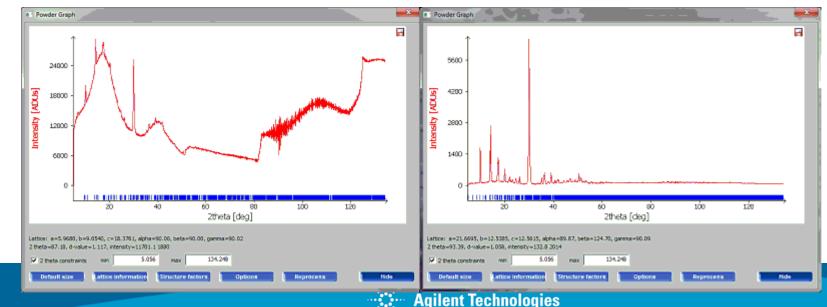
PEAAD 3

- After the successful calibration I can proceed with powder experiments at that distance
- The 'a_86_200114_powder_at_85mm.par' calibration is now explicitly for 85mm.
 <u>Do not</u> use this setup for single crystal work!
- To go back to the standard single crystal calibration: Open the service power tool (wrench) and select under 'Configuration file paths' -> 'Set ccd setup file' the file 'a_86_200114.par' and proceed with system restart.

Powder reference samples

- There are a number of NIST powder standard samples available. E.g. Si, Csl LaB₆ and others.
- A powder standard can also be used for instrument model calibration. But it is not an automated procedure. The procedure is explained in 'ITS 29 - Comments on powder model refinement'. This procedure is difficult, but possible. The single crystal method is strictly preferred.

Powder: common errors


- As is clear from the previous slides, the precise powder extraction relies on the instrument calibration at the used distance. As the detector drive does not maintain the center as it drives back using the instrument model away from the near point is the most frequent user error.
- Also an invalid instrument calibration may cause extraction errors. Here the user has 'changed' the system willing or unwillingly (e.g. SN optics move by hand/arm collision with the user). A quick ylid calibration will repair this flaw.
- The instrument calibration at the near point is head on. The use of the valid distance calbration and using the powder extraction at the far point might incur a scale error of up to 2.0 promille (will depend on orientation of the detector drive). For fingerprinting this might be still fine.

xx gandolfi:

powder patterns from <u>single crystal experiments</u>

- Gandolfi method images a single crystal on film as powder diagram
- You can do the same using a <u>single crystal data set</u> and doing a powder pattern extraction.
- The difference to a normal powder extraction is: background subtraction before image accumulation. The results are striking
- Now you can deposit new mineral structures with experimental powder pattern extracted from your single crystal data! A super sensitive Gandolfi camera.
- See also issue 81: ITS 81 XX GANDOLFI Background computations for powder analysis

Powder: technical

- To accumulate a powder pattern we generate a theta-bin vector with N, where N is automatically selected between 512 and 32000 based on θ_{min} and θ_{max} (only the GSAS extraction has a fixed pitch theta step).
- Concurrent pattern extraction runs frame by frame. Offline processing accumulates frames of the same detector setting. In case of 'Scan time rescaling' the exposure times are accumulated and normalized to 20s. In the 'Gandolfi case' exposure time is normalized by the 'background computation sequence'.
- Each pixel has a defined θ value and will accumulate it in the closest bin X_{raw,i} as X-ray counts (ADUs/system gain). In parallel we accumulate the number of hits C_i and the corrected counts X_{corr,i} (optional L, P and scan time rescale).
- The final pattern is outputted in the following way: The $\sigma(X_{raw,i}) = sqrt(X_{raw,i})$ and $\sigma(X_{corr,i}) = \sigma(X_{raw,i}) X_{corr,i} / X_{raw,i}$. We output as $I_i \rightarrow X_{corr,i} / C_i$ and $\sigma(I_i) \rightarrow \sigma(X_{corr,i}) / C_i$. For proper plotting an additional rescale is applied on the max(I_i ; (i 1 to N)) is <10.

Thank you for listening!

Find out more at

www.agilent.com/chem/xrd

